BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 15620742)

  • 1. Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils.
    Chandra Sekhar K; Kamala CT; Chary NS; Balaram V; Garcia G
    Chemosphere; 2005 Jan; 58(4):507-14. PubMed ID: 15620742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis).
    Lai HY; Chen ZS
    Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of chelator-assisted phytoextraction, using EDTA, lead and Sedum alfredii Hance as a model system.
    Liu D; Islam E; Ma J; Wang X; Mahmood Q; Jin X; Li T; Yang X; Gupta D
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):30-5. PubMed ID: 18484226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of chelate application time on the phytoextraction of lead-contaminated soils.
    Begonia MT; Begonia GB; Miller GS; Gilliard D
    Bull Environ Contam Toxicol; 2004 Dec; 73(6):1033-40. PubMed ID: 15674717
    [No Abstract]   [Full Text] [Related]  

  • 5. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site.
    Yoon J; Cao X; Zhou Q; Ma LQ
    Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils.
    Komárek M; Tlustos P; Száková J; Chrastný V; Ettler V
    Chemosphere; 2007 Mar; 67(4):640-51. PubMed ID: 17184814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.
    Luo C; Shen Z; Li X; Baker AJ
    Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EDTA-assisted Pb phytoextraction.
    Saifullah ; Meers E; Qadir M; de Caritat P; Tack FM; Du Laing G; Zia MH
    Chemosphere; 2009 Mar; 74(10):1279-91. PubMed ID: 19121533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of lead from aqueous solutions using an immobilized biomaterial derived from a plant biomass.
    Chandra Sekhar K; Kamala CT; Chary NS; Sastry AR; Nageswara Rao T; Vairamani M
    J Hazard Mater; 2004 Apr; 108(1-2):111-7. PubMed ID: 15081169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractionation of metals in soils of Kattedan industrial area of Hyderabad (India).
    Chanakya V; Rao KJ
    J Environ Sci Eng; 2009 Apr; 51(2):115-26. PubMed ID: 21114165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents.
    Chiu KK; Ye ZH; Wong MH
    Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils.
    Meers E; Ruttens A; Hopgood M; Lesage E; Tack FM
    Chemosphere; 2005 Oct; 61(4):561-72. PubMed ID: 16202810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chelate-enhanced phytoextraction of lead-contaminated soils using coffeeweed (Sesbania exaltata Raf.).
    Begonia GB; Miller GS; Begonia MF; Burks C
    Bull Environ Contam Toxicol; 2002 Nov; 69(5):624-31. PubMed ID: 12375108
    [No Abstract]   [Full Text] [Related]  

  • 15. Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand.
    Rotkittikhun P; Kruatrachue M; Chaiyarat R; Ngernsansaruay C; Pokethitiyook P; Paijitprapaporn A; Baker AJ
    Environ Pollut; 2006 Nov; 144(2):681-8. PubMed ID: 16533549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A newly found cadmium accumulator--Malva sinensis Cavan.
    Zhang S; Chen M; Li T; Xu X; Deng L
    J Hazard Mater; 2010 Jan; 173(1-3):705-9. PubMed ID: 19767144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil.
    Ruley AT; Sharma NC; Sahi SV; Singh SR; Sajwan KS
    Environ Pollut; 2006 Nov; 144(1):11-8. PubMed ID: 16522347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A phytogeochemical study of the Trás-os-Montes region (NE Portugal): possible species for plant-based soil remediation technologies.
    Díez Lázaro J; Kidd PS; Monterroso Martínez C
    Sci Total Environ; 2006 Feb; 354(2-3):265-77. PubMed ID: 16399000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants.
    Gupta AK; Sinha S
    Chemosphere; 2006 Jun; 64(1):161-73. PubMed ID: 16330080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of synthetic chelators and low molecular weight organic acids in enhancing phytoextraction of heavy metals by two ecotypes of Sedum alfredii Hance.
    Liu D; Islam E; Li T; Yang X; Jin X; Mahmood Q
    J Hazard Mater; 2008 May; 153(1-2):114-22. PubMed ID: 17904736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.