These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 15620869)

  • 1. Oral and subcutaneous absorption of insulin poly(isobutylcyanoacrylate) nanoparticles.
    Mesiha MS; Sidhom MB; Fasipe B
    Int J Pharm; 2005 Jan; 288(2):289-93. PubMed ID: 15620869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The stability of insulin-loaded polybutylcyanoacrylate nanoparticles in an oily medium and the hypoglycemic effect in diabetic rats.
    Hou ZQ; Zhang ZX; Xu ZH; Zhang H; Tong ZF; Leng YS
    Yao Xue Xue Bao; 2005 Jan; 40(1):57-64. PubMed ID: 15881329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats.
    Damgé C; Maincent P; Ubrich N
    J Control Release; 2007 Feb; 117(2):163-70. PubMed ID: 17141909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(alkyl cyanoacrylate) nanospheres for oral administration of insulin.
    Damgé C; Vranckx H; Balschmidt P; Couvreur P
    J Pharm Sci; 1997 Dec; 86(12):1403-9. PubMed ID: 9423155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: Oral delivery using pH-responsive nanoparticles vs. subcutaneous injection.
    Sonaje K; Lin KJ; Wey SP; Lin CK; Yeh TH; Nguyen HN; Hsu CW; Yen TC; Juang JH; Sung HW
    Biomaterials; 2010 Sep; 31(26):6849-58. PubMed ID: 20619787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [In vitro release kinetics and hypoglycemic effect on diabetic rats after oral administration of insulin loaded nanoparticles].
    Zhang Q; Ding J; Yie G; Wei S
    Yao Xue Xue Bao; 1998; 33(2):152-6. PubMed ID: 11938952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oral insulin delivery using nanoparticles based on microemulsions with different structure-types: optimisation and in vivo evaluation.
    Graf A; Rades T; Hook SM
    Eur J Pharm Sci; 2009 Apr; 37(1):53-61. PubMed ID: 19167488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulation and characterization of an oily-based system for oral delivery of insulin.
    Elsayed A; Remawi MA; Qinna N; Farouk A; Badwan A
    Eur J Pharm Biopharm; 2009 Oct; 73(2):269-79. PubMed ID: 19508890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-vitro release and oral bioactivity of insulin in diabetic rats using nanocapsules dispersed in biocompatible microemulsion.
    Watnasirichaikul S; Rades T; Tucker IG; Davies NM
    J Pharm Pharmacol; 2002 Apr; 54(4):473-80. PubMed ID: 11999123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vesicles from Pluronic/poly(lactic acid) block copolymers as new carriers for oral insulin delivery.
    Xiong XY; Li YP; Li ZL; Zhou CL; Tam KC; Liu ZY; Xie GX
    J Control Release; 2007 Jul; 120(1-2):11-7. PubMed ID: 17509718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery.
    Su FY; Lin KJ; Sonaje K; Wey SP; Yen TC; Ho YC; Panda N; Chuang EY; Maiti B; Sung HW
    Biomaterials; 2012 Mar; 33(9):2801-11. PubMed ID: 22243802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption.
    Rekha MR; Sharma CP
    J Control Release; 2009 Apr; 135(2):144-51. PubMed ID: 19331862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of microencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles.
    Kumar PS; Ramakrishna S; Saini TR; Diwan PV
    Pharmazie; 2006 Jul; 61(7):613-7. PubMed ID: 16889069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats.
    Ma Z; Lim TM; Lim LY
    Int J Pharm; 2005 Apr; 293(1-2):271-80. PubMed ID: 15778065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of absorption of insulin-loaded polyisobutylcyanoacrylate nanospheres by sodium cholate after oral and subcutaneous administration in diabetic rats.
    Radwan MA
    Drug Dev Ind Pharm; 2001 Oct; 27(9):981-9. PubMed ID: 11763477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmucosal macromolecular drug delivery.
    Prego C; García M; Torres D; Alonso MJ
    J Control Release; 2005 Jan; 101(1-3):151-62. PubMed ID: 15588901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mucosal insulin delivery systems based on complexation polymer hydrogels: effect of particle size on insulin enteral absorption.
    Morishita M; Goto T; Peppas NA; Joseph JI; Torjman MC; Munsick C; Nakamura K; Yamagata T; Takayama K; Lowman AM
    J Control Release; 2004 May; 97(1):115-24. PubMed ID: 15147809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of oral absorption enhancers on the in vivo performance of insulin-loaded poly(ethylcyanoacrylate) nanospheres in diabetic rats.
    Radwant MA; Aboul-Enein HY
    J Microencapsul; 2002; 19(2):225-35. PubMed ID: 11837977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prolonged antidiabetic effect of zinc-crystallized insulin loaded glycol chitosan nanoparticles in type 1 diabetic rats.
    Jo HG; Min KH; Nam TH; Na SJ; Park JH; Jeong SY
    Arch Pharm Res; 2008 Jul; 31(7):918-23. PubMed ID: 18704336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biopharmaceutical characterisation of insulin and recombinant human growth hormone loaded lipid submicron particles produced by supercritical gas micro-atomisation.
    Salmaso S; Bersani S; Elvassore N; Bertucco A; Caliceti P
    Int J Pharm; 2009 Sep; 379(1):51-8. PubMed ID: 19545616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.