These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
465 related articles for article (PubMed ID: 15621228)
1. Modulation of porosity in apatitic cements by the use of alpha-tricalcium phosphate-calcium sulphate dihydrate mixtures. Fernández E; Vlad MD; Gel MM; López J; Torres R; Cauich JV; Bohner M Biomaterials; 2005 Jun; 26(17):3395-404. PubMed ID: 15621228 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a novel calcium phosphate/sulphate bone cement. Nilsson M; Fernández E; Sarda S; Lidgren L; Planell JA J Biomed Mater Res; 2002 Sep; 61(4):600-7. PubMed ID: 12115450 [TBL] [Abstract][Full Text] [Related]
3. Iron oxide nanoparticles significantly enhances the injectability of apatitic bone cement for vertebroplasty. Vlad MD; del Valle LJ; Barracó M; Torres R; López J; Fernández E Spine (Phila Pa 1976); 2008 Oct; 33(21):2290-8. PubMed ID: 18827693 [TBL] [Abstract][Full Text] [Related]
4. High-strength apatitic cement by modification with superplasticizers. Fernández E; Sarda S; Hamcerencu M; Vlad MD; Gel M; Valls S; Torres R; López J Biomaterials; 2005 May; 26(15):2289-96. PubMed ID: 15585231 [TBL] [Abstract][Full Text] [Related]
5. Biphasic calcium sulfate dihydrate/iron-modified alpha-tricalcium phosphate bone cement for spinal applications: in vitro study. Vlad MD; Valle LJ; Poeată I; López J; Torres R; Barracó M; Fernández E Biomed Mater; 2010 Apr; 5(2):25006. PubMed ID: 20308776 [TBL] [Abstract][Full Text] [Related]
6. New hydraulic cements based on alpha-tricalcium phosphate-calcium sulfate dihydrate mixtures. Bohner M Biomaterials; 2004 Feb; 25(4):741-9. PubMed ID: 14607514 [TBL] [Abstract][Full Text] [Related]
7. Osteogenic biphasic calcium sulphate dihydrate/iron-modified alpha-tricalcium phosphate bone cement for spinal applications: in vivo study. Vlad MD; Sindilar EV; Mariñoso ML; Poeată I; Torres R; López J; Barracó M; Fernández E Acta Biomater; 2010 Feb; 6(2):607-16. PubMed ID: 19607944 [TBL] [Abstract][Full Text] [Related]
8. Newly developed Sr-substituted alpha-TCP bone cements. Pina S; Torres PM; Goetz-Neunhoeffer F; Neubauer J; Ferreira JM Acta Biomater; 2010 Mar; 6(3):928-35. PubMed ID: 19733700 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste. Almirall A; Larrecq G; Delgado JA; Martínez S; Planell JA; Ginebra MP Biomaterials; 2004 Aug; 25(17):3671-80. PubMed ID: 15020142 [TBL] [Abstract][Full Text] [Related]
10. Fiber-enriched double-setting calcium phosphate bone cement. dos Santos LA; Carrodéguas RG; Boschi AO; Fonseca de Arruda AC J Biomed Mater Res A; 2003 May; 65(2):244-50. PubMed ID: 12734819 [TBL] [Abstract][Full Text] [Related]
11. Effect of added gelatin on the properties of calcium phosphate cement. Bigi A; Bracci B; Panzavolta S Biomaterials; 2004 Jun; 25(14):2893-9. PubMed ID: 14962568 [TBL] [Abstract][Full Text] [Related]
12. [Preparation and properties of calcium silicate-phosphate composite bone cements]. Wang Z; Hu J; Liu X; Chen X; Lü B Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):121-4. PubMed ID: 16532825 [TBL] [Abstract][Full Text] [Related]
13. Setting, hardening and resorption of calcium phosphate hydraulic cements. Lemaitre J; Munting E; Mirtchi AA Rev Stomatol Chir Maxillofac; 1992; 93(3):163-5. PubMed ID: 1323872 [TBL] [Abstract][Full Text] [Related]
14. Injectable biphasic calcium phosphate cements as a potential bone substitute. Sariibrahimoglu K; Wolke JG; Leeuwenburgh SC; Yubao L; Jansen JA J Biomed Mater Res B Appl Biomater; 2014 Apr; 102(3):415-22. PubMed ID: 24106108 [TBL] [Abstract][Full Text] [Related]
15. beta-TCP/MCPM-based premixed calcium phosphate cements. Han B; Ma PW; Zhang LL; Yin YJ; Yao KD; Zhang FJ; Zhang YD; Li XL; Nie W Acta Biomater; 2009 Oct; 5(8):3165-77. PubMed ID: 19427931 [TBL] [Abstract][Full Text] [Related]
16. Preparation and properties of calcium phosphate cements incorporated gelatin microspheres and calcium sulfate dihydrate as controlled local drug delivery system. Cai S; Zhai Y; Xu G; Lu S; Zhou W; Ye X J Mater Sci Mater Med; 2011 Nov; 22(11):2487-96. PubMed ID: 21894539 [TBL] [Abstract][Full Text] [Related]
17. [Physical properties of apatite bone cement]. Chen D Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Mar; 17(1):13-5, 18. PubMed ID: 10879182 [TBL] [Abstract][Full Text] [Related]
18. Biologically mediated resorption of brushite cement in vitro. Grover LM; Gbureck U; Wright AJ; Tremayne M; Barralet JE Biomaterials; 2006 Apr; 27(10):2178-85. PubMed ID: 16337265 [TBL] [Abstract][Full Text] [Related]
19. Setting reaction and hardening of an apatitic calcium phosphate cement. Ginebra MP; Fernández E; De Maeyer EA; Verbeeck RM; Boltong MG; Ginebra J; Driessens FC; Planell JA J Dent Res; 1997 Apr; 76(4):905-12. PubMed ID: 9126187 [TBL] [Abstract][Full Text] [Related]
20. Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement: a kinetic analysis. Ginebra MP; Driessens FC; Planell JA Biomaterials; 2004 Aug; 25(17):3453-62. PubMed ID: 15020119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]