BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 15621260)

  • 1. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures.
    Kurtz SM; Villarraga ML; Zhao K; Edidin AA
    Biomaterials; 2005 Jun; 26(17):3699-712. PubMed ID: 15621260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticulate fillers improve the mechanical strength of bone cement.
    Gomoll AH; Fitz W; Scott RD; Thornhill TS; Bellare A
    Acta Orthop; 2008 Jun; 79(3):421-7. PubMed ID: 18622848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Different Experience Levels of Orthopaedic Residents Effect on Polymethylmethacrylate (PMMA) Bone Cement Mechanical Properties.
    Struemph JM; Chong AC; Wooley PH
    Iowa Orthop J; 2015; 35():193-8. PubMed ID: 26361465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of a new vertebroplasty cement based on gold-containing PMMA microspheres.
    Jacobs E; Saralidze K; Roth AK; de Jong JJ; van den Bergh JP; Lataster A; Brans BT; Knetsch ML; Djordjevic I; Willems PC; Koole LH
    Biomaterials; 2016 Mar; 82():60-70. PubMed ID: 26751820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue strength of PMMA bone cement mixed with gentamicin and barium sulphate vs pure PMMA.
    Baleani M; Cristofolini L; Minari C; Toni A
    Proc Inst Mech Eng H; 2003; 217(1):9-12. PubMed ID: 12578214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the radiopacifier in an acrylic bone cement on its mechanical, thermal, and physical properties: barium sulfate-containing cement versus iodine-containing cement.
    Lewis G; van Hooy-Corstjens CS; Bhattaram A; Koole LH
    J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):77-87. PubMed ID: 15786447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone.
    Boger A; Bisig A; Bohner M; Heini P; Schneider E
    J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative radiopacifiers for polymethyl methacrylate bone cements: Silane-treated anatase titanium dioxide and yttria-stabilised zirconium dioxide.
    Ayre WN; Scully N; Elford C; Evans BA; Rowe W; Rowlands J; Mitha R; Malpas P; Manti P; Holt C; Morgan-Jones R; Birchall JC; Denyer SP; Evans SL
    J Biomater Appl; 2021 May; 35(10):1235-1252. PubMed ID: 33573445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a highly-radiopaque iodine-containing acrylic bone cement for use in augmentation of vertebral compression fractures.
    Boelen EJ; Lewis G; Xu J; Slots T; Koole LH; van Hooy-Corstjens CS
    J Biomed Mater Res A; 2008 Jul; 86(1):76-88. PubMed ID: 17941018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the importance of considering porosity when simulating the fatigue of bone cement.
    Jeffers JR; Browne M; Roques A; Taylor M
    J Biomech Eng; 2005 Aug; 127(4):563-70. PubMed ID: 16121525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of barium concentration on the radiopacity and biomechanics of bone cement: experimental study.
    Makita M; Yamakado K; Nakatsuka A; Takaki H; Inaba T; Oshima F; Katayama H; Takeda K
    Radiat Med; 2008 Nov; 26(9):533-8. PubMed ID: 19030961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressive fatigue properties of commercially available standard and low-modulus acrylic bone cements intended for vertebroplasty.
    Robo C; Öhman-Mägi C; Persson C
    J Mech Behav Biomed Mater; 2018 Jun; 82():70-76. PubMed ID: 29571115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Damage accumulation, fatigue and creep behaviour of vacuum mixed bone cement.
    Jeffers JR; Browne M; Taylor M
    Biomaterials; 2005 Sep; 26(27):5532-41. PubMed ID: 15860209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement.
    Khandaker M; Vaughan MB; Morris TL; White JJ; Meng Z
    Int J Nanomedicine; 2014; 9():2699-712. PubMed ID: 24920906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short- and long-term effects of vertebroplastic bone cement on cancellous bone.
    Quan R; Ni Y; Zhang L; Xu J; Zheng X; Yang D
    J Mech Behav Biomed Mater; 2014 Jul; 35():102-10. PubMed ID: 24762857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiopacity and fatigue characterization of a novel acrylic bone cement with sodium fluoride.
    Minari C; Cristofolini L; Baruffaldi F; Pierotti L
    Artif Organs; 2000 Sep; 24(9):751-7. PubMed ID: 11012547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads.
    Boger A; Bohner M; Heini P; Schwieger K; Schneider E
    Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of chitosan/beta-tricalcium phosphate microspheres as a constituent to PMMA cement.
    Lin LC; Chang SJ; Kuo SM; Chen SF; Kuo CH
    J Mater Sci Mater Med; 2005 Jun; 16(6):567-74. PubMed ID: 15928873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMP-modified PMMA bone cement with adapted mechanical and hardening properties for the use in cancellous bone augmentation.
    Boger A; Wheeler K; Montali A; Gruskin E
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):760-6. PubMed ID: 19280644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.