BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 15621260)

  • 21. Vertebroplasty comparing injectable calcium phosphate cement compared with polymethylmethacrylate in a unique canine vertebral body large defect model.
    Turner TM; Urban RM; Singh K; Hall DJ; Renner SM; Lim TH; Tomlinson MJ; An HS
    Spine J; 2008; 8(3):482-7. PubMed ID: 18455113
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined influence of barium sulfate content and co-monomer concentration on properties of PMMA bone cements for vertebroplasty.
    Cisneros-Pineda OG; Cauich-Rodríguez JV; Cervantes-Uc JM; Vázquez B; Román JS
    J Biomater Sci Polym Ed; 2011; 22(12):1563-80. PubMed ID: 20633330
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The characteristics of a hydroxyapatite-chitosan-PMMA bone cement.
    Kim SB; Kim YJ; Yoon TL; Park SA; Cho IH; Kim EJ; Kim IA; Shin JW
    Biomaterials; 2004 Nov; 25(26):5715-23. PubMed ID: 15147817
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of two methods of fatigue testing bone cement.
    Tanner KE; Wang JS; Kjellson F; Lidgren L
    Acta Biomater; 2010 Mar; 6(3):943-52. PubMed ID: 19766742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation.
    Aghyarian S; Rodriguez LC; Chari J; Bentley E; Kosmopoulos V; Lieberman IH; Rodrigues DC
    J Biomater Appl; 2014 Nov; 29(5):688-98. PubMed ID: 25085810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modification of Mechanical Properties, Polymerization Temperature, and Handling Time of Polymethylmethacrylate Cement for Enhancing Applicability in Vertebroplasty.
    Tai CL; Lai PL; Lin WD; Tsai TT; Lee YC; Liu MY; Chen LH
    Biomed Res Int; 2016; 2016():7901562. PubMed ID: 27812530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanofunctionalized zirconia and barium sulfate particles as bone cement additives.
    Gillani R; Ercan B; Qiao A; Webster TJ
    Int J Nanomedicine; 2010 Feb; 5():1-11. PubMed ID: 20161983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compressive fatigue properties of a commercially available acrylic bone cement for vertebroplasty.
    Ajaxon I; Persson C
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1199-207. PubMed ID: 24659042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Histological and radiographic evaluation of polymethylmethacrylate with two different concentrations of barium sulfate in a sheep vertebroplasty model.
    Kobayashi N; Togawa D; Fujishiro T; Powell KA; Turner AS; Seim HB; Bauer TW
    J Biomed Mater Res A; 2005 Oct; 75(1):123-7. PubMed ID: 16037940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomechanical evaluation of kyphoplasty with calcium sulfate cement in a cadaveric osteoporotic vertebral compression fracture model.
    Perry A; Mahar A; Massie J; Arrieta N; Garfin S; Kim C
    Spine J; 2005; 5(5):489-93. PubMed ID: 16153574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical and histological evaluation of a PMMA-based bone cement modified with gamma-methacryloxypropyltrimethoxysilane and calcium acetate.
    Tsukeoka T; Suzuki M; Ohtsuki C; Sugino A; Tsuneizumi Y; Miyagi J; Kuramoto K; Moriya H
    Biomaterials; 2006 Jul; 27(21):3897-903. PubMed ID: 16563499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of hydroxyapatite on PMMA-HAp cement for biomedical applications.
    Montaño CJ; Campos TPR; Lemos BRS; Yoshida MI; Almeida NGS; Aguilar MTP; Lima CV
    Biomed Mater Eng; 2020; 31(3):191-201. PubMed ID: 32568169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fracture properties of an acrylic bone cement.
    Bialoblocka-Juszczyk E; Baleani M; Cristofolini L; Viceconti M
    Acta Bioeng Biomech; 2008; 10(1):21-6. PubMed ID: 18634350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Micromechanical characterisation of failure in acrylic bone cement: the effect of barium sulphate agglomerates.
    Shearwood-Porter N; Browne M; Sinclair I
    J Mech Behav Biomed Mater; 2012 Sep; 13():85-92. PubMed ID: 22842279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical characterization of bone graft substitute ceramic cements.
    Drosos GI; Babourda E; Magnissalis EA; Giatromanolaki A; Kazakos K; Verettas DA
    Injury; 2012 Mar; 43(3):266-71. PubMed ID: 21371707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Validation of the small-punch test as a technique for characterizing the mechanical properties of acrylic bone cement.
    Dunne NJ; Leonard D; Daly C; Buchanan FJ; Orr JF
    Proc Inst Mech Eng H; 2006 Jan; 220(1):11-21. PubMed ID: 16459442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vertebral augmentation with a novel Vessel-X bone void filling container system and bioactive bone cement.
    Zheng Z; Luk KD; Kuang G; Li Z; Lin J; Lam WM; Cheung KM; Lu WW
    Spine (Phila Pa 1976); 2007 Sep; 32(19):2076-82. PubMed ID: 17762808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Novel Composite PMMA-based Bone Cement with Reduced Potential for Thermal Necrosis.
    Lv Y; Li A; Zhou F; Pan X; Liang F; Qu X; Qiu D; Yang Z
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11280-5. PubMed ID: 25966790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of the monomer-to-powder ratio on the material properties of acrylic bone cement.
    Belkoff SM; Sanders JC; Jasper LE
    J Biomed Mater Res; 2002; 63(4):396-9. PubMed ID: 12115746
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioactive bone cement as a principal fixture for spinal burst fracture: an in vitro biomechanical and morphologic study.
    Lu WW; Cheung KM; Li YW; Luk KD; Holmes AD; Zhu QA; Leong JC
    Spine (Phila Pa 1976); 2001 Dec; 26(24):2684-90; discussion 2690-1. PubMed ID: 11740355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.