BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 15621260)

  • 41. Synthesis of bioactive PMMA bone cement via modification with methacryloxypropyltri-methoxysilane and calcium acetate.
    Mori A; Ohtsuki C; Miyazaki T; Sugino A; Tanihara M; Kuramoto K; Osaka A
    J Mater Sci Mater Med; 2005 Aug; 16(8):713-8. PubMed ID: 15965740
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modification and evaluation of diatrizoate sodium containing polymethyl methacrylate bone cement.
    Han J; Zheng X; Liu J; Wang Y; Cui Z; Wu S; Liang Y; Zhu S; Ge X; Li Z
    J Biomater Appl; 2023 Feb; 37(7):1300-1314. PubMed ID: 36607821
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Estimation of the optimum loading of an antibiotic powder in an acrylic bone cement: gentamicin sulfate in SmartSet HV.
    Lewis G; Janna S
    Acta Orthop; 2006 Aug; 77(4):622-7. PubMed ID: 16929440
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of test sample shape and surface production method on the fatigue behaviour of PMMA bone cement.
    Sheafi EM; Tanner KE
    J Mech Behav Biomed Mater; 2014 Jan; 29():91-102. PubMed ID: 24070780
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Static and fatigue mechanical characterizations of variable diameter fibers reinforced bone cement.
    Zhou Y; Yue W; Li C; Mason JJ
    J Mater Sci Mater Med; 2009 Feb; 20(2):633-41. PubMed ID: 18936882
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tensile characteristics of ten commercial acrylic bone cements.
    Harper EJ; Bonfield W
    J Biomed Mater Res; 2000 Sep; 53(5):605-16. PubMed ID: 10984711
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of porosity on the fatigue performance of polymethyl methacrylate bone cement: an analytical investigation.
    Evans SL
    Proc Inst Mech Eng H; 2006 Jan; 220(1):1-10. PubMed ID: 16459441
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A procedure and criterion for bone cement fracture toughness tests.
    Guandalini L; Baleani M; Viceconti M
    Proc Inst Mech Eng H; 2004; 218(6):445-50. PubMed ID: 15648668
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of the particle release of porous PMMA cements during curing.
    Beck S; Boger A
    Acta Biomater; 2009 Sep; 5(7):2503-7. PubMed ID: 19409868
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of oligo(trimethylene carbonate) addition on the stiffness of acrylic bone cement.
    Persson C; López A; Fathali H; Hoess A; Rojas R; Ott MK; Hilborn J; Engqvist H
    Biomatter; 2016; 6(1):e1133394. PubMed ID: 26727581
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dependence of in vitro fatigue properties of PMMA bone cement on the polydispersity index of its powder.
    Lewis G; Li Y
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):94-101. PubMed ID: 19878906
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of a novel radiopacifiying agent on the physical properties of surgical spineplex.
    O'Brien D; Boyd D; Madigan S; Murphy S
    J Mater Sci Mater Med; 2010 Jan; 21(1):53-8. PubMed ID: 19688251
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.
    Khaled SM; Charpentier PA; Rizkalla AS
    J Biomater Appl; 2011 Feb; 25(6):515-37. PubMed ID: 20207779
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties.
    Gilbert JL; Ney DS; Lautenschlager EP
    Biomaterials; 1995 Sep; 16(14):1043-55. PubMed ID: 8519925
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [In vivo experiment of porous bioactive bone cement modified by bioglass and chitosan].
    Li Y; Lei W; Wang Z; Zhang Y; Niu E; Yu L; Wu J; Zang Y; Liu Z; Wu Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Mar; 27(3):320-5. PubMed ID: 23672134
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fatigue crack propagation rates in PMMA bone cement cannot be reduced to a single power law.
    Race A; Mann KA
    J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):278-82. PubMed ID: 18161813
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modified PMMA cements for a hydrolysis resistant metal-polymer interface in orthopaedic applications.
    Gbureck U; Grübel S; Thull R; Barralet JE
    Acta Biomater; 2005 Nov; 1(6):671-6. PubMed ID: 16701848
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reinforcement of bone cement using zirconia fibers with and without acrylic coating.
    Kotha S; Li C; Schmid S; Mason J
    J Biomed Mater Res A; 2009 Mar; 88(4):898-906. PubMed ID: 18384160
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preparation of calcium phosphate cement and polymethyl methacrylate for biological composite bone cements.
    Yang J; Zhang K; Zhang S; Fan J; Guo X; Dong W; Wang S; Chen Y; Yu B
    Med Sci Monit; 2015 Apr; 21():1162-72. PubMed ID: 25904398
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Propagation of fatigue cracks in acrylic bone cements containing different radiopaque agents.
    Manero JM; Ginebra MP; Gil FJ; Planell JA; Delgado JA; Morejon L; Artola A; Gurruchaga M; Goñi I
    Proc Inst Mech Eng H; 2004; 218(3):167-72. PubMed ID: 15239567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.