These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15621261)

  • 81. [New development of a bone cement which swells].
    Seidel H; Polzhofer K
    Aktuelle Probl Chir Orthop; 1987; 31():354-7. PubMed ID: 2888384
    [No Abstract]   [Full Text] [Related]  

  • 82. Prechilling and vacuum mixing not suitable for all bone cements. Handling characteristics and exotherms of bone cements.
    Hansen D; Jensen JS
    J Arthroplasty; 1990 Dec; 5(4):287-90. PubMed ID: 2290082
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Characteristics and mechanical properties of acrylolpamidronate-treated strontium containing bioactive bone cement.
    Li ZY; Yang C; Lu WW; Xu B; Lam WM; Ni GX; Abbah SA; Yang F; Cheung KM; Luk KD
    J Biomed Mater Res B Appl Biomater; 2007 Nov; 83(2):464-71. PubMed ID: 17415774
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Calcium phosphate glasses: silanation process and effect on the bioactivity behavior of glass-PMMA composites.
    Alonso LM; García-Menocal JÁ; Aymerich MT; Guichard JÁ; García-Vallés M; Manent SM; Ginebra MP
    J Biomed Mater Res B Appl Biomater; 2014 Feb; 102(2):205-13. PubMed ID: 23908013
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Structure-property relationships of DEAEM-containing bone cements: effect of the substitution of a methylene group by an aromatic ring.
    Cervantes-Uc JM; Cauich-Rodríguez JV; Vázquez-Torres H
    J Biomater Sci Polym Ed; 2007; 18(1):1-16. PubMed ID: 17274447
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Water sorption of polymethacrylate networks: bis-GMA/TEGDM copolymers.
    Kalachandra S; Turner DT
    J Biomed Mater Res; 1987 Mar; 21(3):329-38. PubMed ID: 2951387
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Bioactive bone cement: Effect of silane treatment on mechanical properties and osteoconductivity.
    Shinzato S; Nakamura T; Kokubo T; Kitamura Y
    J Biomed Mater Res; 2001 Jun; 55(3):277-84. PubMed ID: 11255180
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Synthesis and characterization of self-curing hydrophilic bone cements for protein delivery.
    Franco-Marquès E; Parra J; Pèlach MA; Méndez JA
    J Biomed Mater Res B Appl Biomater; 2015 Jul; 103(5):992-1001. PubMed ID: 25209322
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Leaching of tobramycin from PMMA bone cement beads.
    von Frauhofer JA; Polk HC; Seligson D
    J Biomed Mater Res; 1985 Sep; 19(7):751-6. PubMed ID: 4077895
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Injectable acrylic bone cements for vertebroplasty based on a radiopaque hydroxyapatite. Bioactivity and biocompatibility.
    Hernández L; Parra J; Vázquez B; Bravo AL; Collía F; Goñi I; Gurruchaga M; San Román J
    J Biomed Mater Res B Appl Biomater; 2009 Jan; 88(1):103-14. PubMed ID: 18683227
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Mechanisms underlying the limited injectability of hydraulic calcium phosphate paste.
    Habib M; Baroud G; Gitzhofer F; Bohner M
    Acta Biomater; 2008 Sep; 4(5):1465-71. PubMed ID: 18445539
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Osteointegration of a bisphenol-a-glycidyl-dimethacrylate composite and its use in anterior skull base defects: an experimental study in an experimental design model of cerebrospinal fluid leak.
    Sanus GZ; Kucukyuruk B; Biceroglu H; Isler C; Tanriverdi T; Bas A; Albayram S; Kurkcu M; Oz B
    J Craniofac Surg; 2014 Jul; 25(4):1524-8. PubMed ID: 24914756
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Calcium sulphate-based cements containing cephalexin.
    Doadrio JC; Arcos D; Cabañas MV; Vallet-Regí M
    Biomaterials; 2004 Jun; 25(13):2629-35. PubMed ID: 14751749
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Histological study on bone response to resin-hydroxyapatite.
    Saitoh O; Takamori Y; Takashima F; Maruyama T
    J Osaka Univ Dent Sch; 1992 Dec; 32():118-25. PubMed ID: 1341705
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Lysineurethanedimethacrylate--a novel generation of amino acid based monomers for bone cements and tissue repair.
    Müh E; Zimmermann J; Kneser U; Marquardt J; Mülhaupt R; Stark B
    Biomaterials; 2002 Jul; 23(14):2849-54. PubMed ID: 12069324
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Degree of polymerization of acrylic bone cement.
    Bayne SC; Lautenschlager EP; Compere CL; Wildes R
    J Biomed Mater Res; 1975 Jan; 9(1):27-34. PubMed ID: 1176470
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Real-time synchronous measurement of curing characteristics and polymerization stress in bone cements with a cantilever-beam based instrument.
    Palagummi SV; Landis FA; Chiang MYM
    Rev Sci Instrum; 2018 Mar; 89(3):035102. PubMed ID: 29604748
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Analysis of rheological properties of bone cements.
    Nicholas MK; Waters MG; Holford KM; Adusei G
    J Mater Sci Mater Med; 2007 Jul; 18(7):1407-12. PubMed ID: 17277981
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Water absorption characteristics of modified hydroxyapatite bone cements.
    Deb S; Braden M; Bonfield W
    Biomaterials; 1995 Sep; 16(14):1095-100. PubMed ID: 8519931
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Investigation into the release of bioactive recombinant human growth hormone from normal and low-viscosity poly(methylmethacrylate) bone cements.
    Goodwin CJ; Braden M; Downes S; Marshall NJ
    J Biomed Mater Res; 1997 Jan; 34(1):47-55. PubMed ID: 8978652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.