These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 15621457)
1. Interaction between H2-producing and non-H2-producing cellulolytic bacteria from the human colon. Chassard C; Gaillard-Martinie B; Bernalier-Donadille A FEMS Microbiol Lett; 2005 Jan; 242(2):339-44. PubMed ID: 15621457 [TBL] [Abstract][Full Text] [Related]
2. H2 and acetate transfers during xylan fermentation between a butyrate-producing xylanolytic species and hydrogenotrophic microorganisms from the human gut. Chassard C; Bernalier-Donadille A FEMS Microbiol Lett; 2006 Jan; 254(1):116-22. PubMed ID: 16451188 [TBL] [Abstract][Full Text] [Related]
3. Interspecies H2 transfer in cellulose degradation between fibrolytic bacteria and H2-utilizing microorganisms from the human colon. Robert C; Del'Homme C; Bernalier-Donadille A FEMS Microbiol Lett; 2001 Dec; 205(2):209-14. PubMed ID: 11750804 [TBL] [Abstract][Full Text] [Related]
4. Detection of cellulolytic bacteria from the human colon. Kopecný J; Hajer J; Mrázek J Folia Microbiol (Praha); 2004; 49(2):175-7. PubMed ID: 15227792 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. Ren Z; Ward TE; Logan BE; Regan JM J Appl Microbiol; 2007 Dec; 103(6):2258-66. PubMed ID: 18045409 [TBL] [Abstract][Full Text] [Related]
6. Interactions of microbial populations in cellulose fermentation. Wolin MJ; Miller TL Fed Proc; 1983 Jan; 42(1):109-13. PubMed ID: 6848372 [TBL] [Abstract][Full Text] [Related]
7. Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. Hoskins LC; Agustines M; McKee WB; Boulding ET; Kriaris M; Niedermeyer G J Clin Invest; 1985 Mar; 75(3):944-53. PubMed ID: 3920248 [TBL] [Abstract][Full Text] [Related]
8. Enumeration and isolation of cellulolytic and hemicellulolytic bacteria from human feces. Wedekind KJ; Mansfield HR; Montgomery L Appl Environ Microbiol; 1988 Jun; 54(6):1530-5. PubMed ID: 3415224 [TBL] [Abstract][Full Text] [Related]
9. Unique aspects of fiber degradation by the ruminal ethanologen Ruminococcus albus 7 revealed by physiological and transcriptomic analysis. Christopherson MR; Dawson JA; Stevenson DM; Cunningham AC; Bramhacharya S; Weimer PJ; Kendziorski C; Suen G BMC Genomics; 2014 Dec; 15(1):1066. PubMed ID: 25477200 [TBL] [Abstract][Full Text] [Related]
10. Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive. Mosoni P; Chaucheyras-Durand F; Béra-Maillet C; Forano E J Appl Microbiol; 2007 Dec; 103(6):2676-85. PubMed ID: 18045448 [TBL] [Abstract][Full Text] [Related]
11. Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. Kato S; Haruta S; Cui ZJ; Ishii M; Igarashi Y FEMS Microbiol Ecol; 2004 Dec; 51(1):133-42. PubMed ID: 16329862 [TBL] [Abstract][Full Text] [Related]
12. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. Lo YC; Bai MD; Chen WM; Chang JS Bioresour Technol; 2008 Nov; 99(17):8299-303. PubMed ID: 18417341 [TBL] [Abstract][Full Text] [Related]
14. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Latham MJ; Wolin MJ Appl Environ Microbiol; 1977 Sep; 34(3):297-301. PubMed ID: 562131 [TBL] [Abstract][Full Text] [Related]
15. Effect of adding cellulolytic bacterium on stable cellulose-degrading microbial community. Narisawa N; Haruta S; Cui ZJ; Ishii M; Igarashi Y J Biosci Bioeng; 2007 Nov; 104(5):432-4. PubMed ID: 18086447 [TBL] [Abstract][Full Text] [Related]
16. [Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region]. Zhilina TN; Kevbrin VV; Turova TP; Lysenko AM; Kostrikina NA; Zavarzin GA Mikrobiologiia; 2005; 74(5):642-53. PubMed ID: 16315983 [TBL] [Abstract][Full Text] [Related]
17. Cellulolytic and non-cellulolytic bacteria in rat gastrointestinal tracts. Macy JM; Farrand JR; Montgomery L Appl Environ Microbiol; 1982 Dec; 44(6):1428-34. PubMed ID: 7159085 [TBL] [Abstract][Full Text] [Related]
19. Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose. Kudo H; Cheng KJ; Costerton JW Can J Microbiol; 1987 Mar; 33(3):244-8. PubMed ID: 3567744 [TBL] [Abstract][Full Text] [Related]
20. Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium. Geng A; He Y; Qian C; Yan X; Zhou Z Bioresour Technol; 2010 Jun; 101(11):4029-33. PubMed ID: 20144864 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]