BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 15621642)

  • 1. Settlement behaviour of marine invertebrate larvae measured by EthoVision 3.0.
    Marechal JP; Hellio C; Sebire M; Clare AS
    Biofouling; 2004; 20(4-5):211-7. PubMed ID: 15621642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gregarious settlement in cypris larvae:the effects of cyprid age and assay duration.
    Head R; Berntsson K; Dahlström M; Overbeke K; Thomason J
    Biofouling; 2004 Apr; 20(2):123-8. PubMed ID: 15203966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of barnacle (Balanus amphitrite Darwin) cyprid settlement behavior by sulfobetaine and carboxybetaine methacrylate polymer coatings.
    Aldred N; Li G; Gao Y; Clare AS; Jiang S
    Biofouling; 2010 Aug; 26(6):673-83. PubMed ID: 20658383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of foul-release coatings on the settlement and behaviour of cyprid larvae of the barnacle Balanus amphitrite amphitrite Darwin.
    Afsar A; De Nys R; Steinberg P
    Biofouling; 2003 Apr; 19 Suppl():105-10. PubMed ID: 14618711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The adhesive strategies of cyprids and development of barnacle-resistant marine coatings.
    Aldred N; Clare AS
    Biofouling; 2008; 24(5):351-63. PubMed ID: 18597201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of a serine protease, Alcalase, on the adhesives of barnacle cyprids (Balanus amphitrite).
    Aldred N; Phang IY; Conlan SL; Clare AS; Vancso GJ
    Biofouling; 2008; 24(2):97-107. PubMed ID: 18231899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ultrasound on cyprids and juvenile barnacles.
    Guo SF; Lee HP; Chaw KC; Miklas J; Teo SL; Dickinson GH; Birch WR; Khoo BC
    Biofouling; 2011 Feb; 27(2):185-92. PubMed ID: 21271409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface exploration of Amphibalanus amphitrite cyprids on microtextured surfaces.
    Chaw KC; Dickinson GH; Ang K; Deng J; Birch WR
    Biofouling; 2011 Apr; 27(4):413-22. PubMed ID: 21547757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field-based video observations of wild barnacle cyprid behaviour in response to textural and chemical settlement cues.
    Prendergast GS; Zurn CM; Bers AV; Head RM; Hansson LJ; Thomason JC
    Biofouling; 2008; 24(6):449-59. PubMed ID: 18696291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Larval vision contributes to gregarious settlement in barnacles: adult red fluorescence as a possible visual signal.
    Matsumura K; Qian PY
    J Exp Biol; 2014 Mar; 217(Pt 5):743-50. PubMed ID: 24574388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated tracking and classification of the settlement behaviour of barnacle cyprids.
    Alsaab A; Aldred N; Clare AS
    J R Soc Interface; 2017 Mar; 14(128):. PubMed ID: 28356538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the exploratory behaviour of Amphibalanus amphitrite cyprids.
    Chaw KC; Birch WR
    Biofouling; 2009 Oct; 25(7):611-9. PubMed ID: 20183120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lethal and sub-lethal impacts of pulsed laser irradiations on the larvae of the fouling barnacle Balanus amphitrite.
    Nandakumar K; Obika H; Shinozaki T; Ooie T; Utsumi A; Yano T
    Biofouling; 2003 Jun; 19(3):169-76. PubMed ID: 14619285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of surface charge and Gibbs surface energy on the settlement behaviour of barnacle cyprids (Balanus amphitrite).
    Petrone L; Di Fino A; Aldred N; Sukkaew P; Ederth T; Clare AS; Liedberg B
    Biofouling; 2011 Oct; 27(9):1043-55. PubMed ID: 22043823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis of larvae during development, attachment, and metamorphosis in the fouling barnacle, Balanus amphitrite.
    Thiyagarajan V; Qian PY
    Proteomics; 2008 Aug; 8(15):3164-72. PubMed ID: 18654988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between surface chemistry and settlement behaviour in barnacle cyprids (Balanus improvisus).
    Di Fino A; Petrone L; Aldred N; Ederth T; Liedberg B; Clare AS
    Biofouling; 2014 Feb; 30(2):143-52. PubMed ID: 24313326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species-specific engineered antifouling topographies: correlations between the settlement of algal zoospores and barnacle cyprids.
    Schumacher JF; Aldred N; Callow ME; Finlay JA; Callow JA; Clare AS; Brennan AB
    Biofouling; 2007; 23(5-6):307-17. PubMed ID: 17852066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attachment strength is a key factor in the selection of surfaces by barnacle cyprids (Balanus amphitrite) during settlement.
    Aldred N; Scardino A; Cavaco A; de Nys R; Clare AS
    Biofouling; 2010; 26(3):287-99. PubMed ID: 20087801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Instantaneous Flow Structures and Opportunities for Larval Settlement: Barnacle Larvae Swim to Settle.
    Larsson AI; Granhag LM; Jonsson PR
    PLoS One; 2016; 11(7):e0158957. PubMed ID: 27463968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Barnacle cyprid motility and distribution in the water column as an indicator of the settlement-inhibiting potential of nontoxic antifouling chemistries.
    Maleschlijski S; Bauer S; Di Fino A; Sendra GH; Clare AS; Rosenhahn A
    Biofouling; 2014 Oct; 30(9):1055-65. PubMed ID: 25334041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.