These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 15621652)

  • 21. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction.
    Scotti CM; Jimenez J; Muluk SC; Finol EA
    Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):301-22. PubMed ID: 18568827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical simulation of noninvasive blood pressure measurement.
    Hayashi S; Hayase T; Shirai A; Maruyama M
    J Biomech Eng; 2006 Oct; 128(5):680-7. PubMed ID: 16995754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flow-induced wall shear stress in abdominal aortic aneurysms: Part I--steady flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):309-18. PubMed ID: 12186710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endothelial cell morphologic response to asymmetric stenosis hemodynamics: effects of spatial wall shear stress gradients.
    Rouleau L; Farcas M; Tardif JC; Mongrain R; Leask RL
    J Biomech Eng; 2010 Aug; 132(8):081013. PubMed ID: 20670062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. model and velocity analysis.
    Boyd J; Buick JM
    Phys Med Biol; 2008 Oct; 53(20):5767-79. PubMed ID: 18824786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical and experimental flow analysis of the Wang-Zwische double-lumen cannula.
    De Bartolo C; Nigro A; Fragomeni G; Colacino FM; Wang D; Jones CC; Zwischenberger J
    ASAIO J; 2011; 57(4):318-27. PubMed ID: 21654494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A mathematical model for blood flow through an arterial bifurcation.
    Tandon PN; Kawahara M; Rana UV
    Int J Biomed Comput; 1994 May; 35(4):309-25. PubMed ID: 8063457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational approach to estimating the effects of blood properties on changes in intra-stent flow.
    Benard N; Perrault R; Coisne D
    Ann Biomed Eng; 2006 Aug; 34(8):1259-71. PubMed ID: 16799830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: II. shear analysis.
    Boyd J; Buick JM
    Phys Med Biol; 2008 Oct; 53(20):5781-95. PubMed ID: 18824787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A computer simulation of the blood flow at the aortic bifurcation.
    Lou Z; Yang WJ
    Biomed Mater Eng; 1991; 1(3):173-93. PubMed ID: 1842515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wall shear stresses in small and large two-way bypass grafts.
    Qiao A; Liu Y; Guo Z
    Med Eng Phys; 2006 Apr; 28(3):251-8. PubMed ID: 16029954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mathematical simulation of the ureter: effects of the model parameters on ureteral pressure/flow relations.
    Vahidi B; Fatouraee N; Imanparast A; Moghadam AN
    J Biomech Eng; 2011 Mar; 133(3):031004. PubMed ID: 21303180
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of branchings on blood flow in the system of human coronary arteries.
    Wiwatanapataphee B; Wu YH; Siriapisith T; Nuntadilok B
    Math Biosci Eng; 2012 Jan; 9(1):199-214. PubMed ID: 22229404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation of branching blood flows on parallel computers.
    Yue X; Hwang FN; Shandas R; Cai XC
    Biomed Sci Instrum; 2004; 40():325-30. PubMed ID: 15133979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Numerical simulation of the distribution of shear stress on the bottom of parallel plate flow chamber under different inlet velocity conditions].
    Zeng Y; Liu X; Lai Y; Huang X; Mao B; Gao T; Shen Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Aug; 27(4):785-9. PubMed ID: 20842845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wall stress and deformation analysis in a numerical model of pulse wave propagation.
    He F; Hua L; Gao L
    Biomed Mater Eng; 2015; 26 Suppl 1():S527-32. PubMed ID: 26406044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical hemolysis in blood flow: user-independent predictions with the solution of a partial differential equation.
    Lacasse D; Garon A; Pelletier D
    Comput Methods Biomech Biomed Engin; 2007 Feb; 10(1):1-12. PubMed ID: 18651267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical 3D-stimulation of pulsatile wall shear stress in an arterial T-bifurcation model.
    Perktold K; Peter R
    J Biomed Eng; 1990 Jan; 12(1):2-12. PubMed ID: 2296164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The impact of wall shear stress and pressure drop on the stability of the atherosclerotic plaque.
    Li ZY; Taviani V; Gillard JH
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1373-6. PubMed ID: 19162923
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Blood flow in small curved tubes.
    Wang CY; Bassingthwaighte JB
    J Biomech Eng; 2003 Dec; 125(6):910-3. PubMed ID: 14986418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.