These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 15621652)

  • 41. Endothelial shear stress from large-scale blood flow simulations.
    Melchionna S; Kaxiras E; Bernaschi M; Succi S
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2354-61. PubMed ID: 21536583
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Concentration wave of a solute in an artery: the influence of curvature.
    Pontrelli G; Tatone A
    Comput Methods Biomech Biomed Engin; 2007 Apr; 10(2):129-36. PubMed ID: 18651279
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Shape optimization in steady blood flow: a numerical study of non-Newtonian effects.
    Abraham F; Behr M; Heinkenschloss M
    Comput Methods Biomech Biomed Engin; 2005 Apr; 8(2):127-37. PubMed ID: 16154876
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An efficient semi-implicit method for three-dimensional non-hydrostatic flows in compliant arterial vessels.
    Fambri F; Dumbser M; Casulli V
    Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1170-98. PubMed ID: 24842268
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A thick walled viscoelastic model for the mechanics of arteries.
    Kuchar NR; Ostrach S
    J Biomech; 1969 Oct; 2(4):443-54. PubMed ID: 16335143
    [No Abstract]   [Full Text] [Related]  

  • 46. Bend sweep angle and Reynolds number effects on hemodynamics of s-shaped arteries.
    Niazmand H; Rajabi Jaghargh E
    Ann Biomed Eng; 2010 Sep; 38(9):2817-28. PubMed ID: 20428951
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Wall shear stress--an important determinant of endothelial cell function and structure--in the arterial system in vivo. Discrepancies with theory.
    Reneman RS; Arts T; Hoeks AP
    J Vasc Res; 2006; 43(3):251-69. PubMed ID: 16491020
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Errors in the estimation of arterial wall shear rates that result from curve fitting of velocity profiles.
    Lou Z; Yang WJ; Stein PD
    J Biomech; 1993; 26(4-5):383-90. PubMed ID: 8478343
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Semi-implicit numerical modeling of axially symmetric flows in compliant arterial systems.
    Casulli V; Dumbser M; Toro EF
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):257-72. PubMed ID: 25099329
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of capillary blood pressure levels at which capillary collapse is likely in a tissue subjected to large compressive and shear deformations.
    Shilo M; Gefen A
    Comput Methods Biomech Biomed Engin; 2012; 15(1):59-71. PubMed ID: 21181574
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Numerical investigations of the unsteady blood flow in the end-to-side arteriovenous fistula for hemodialysis.
    Jodko D; Obidowski D; Reorowicz P; Jóźwik K
    Acta Bioeng Biomech; 2016; 18(4):3-13. PubMed ID: 28133372
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Local and global geometric influence on steady flow in distal anastomoses of peripheral bypass grafts.
    Giordana S; Sherwin SJ; Peiró J; Doorly DJ; Crane JS; Lee KE; Cheshire NJ; Caro CG
    J Biomech Eng; 2005 Dec; 127(7):1087-98. PubMed ID: 16502651
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical Investigation of Oxygenated and Deoxygenated Blood Flow through a Tapered Stenosed Arteries in Magnetic Field.
    Abdollahzadeh Jamalabadi MY; Akbari Bidokhti AA; Khak Rah H; Vaezi S; Hooshmand P
    PLoS One; 2016; 11(12):e0167393. PubMed ID: 27941986
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of elastic property of the wall on flow characteristics through arterial stenoses.
    Moayeri MS; Zendehbudi GR
    J Biomech; 2003 Apr; 36(4):525-35. PubMed ID: 12600343
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Branch angle and flow into a symmetric bifurcation.
    Tadjfar M
    J Biomech Eng; 2004 Aug; 126(4):516-8. PubMed ID: 15543870
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Accurate noninvasive quantitation of blood flow, cross-sectional lumen vessel area and wall shear stress by three-dimensional paraboloid modeling of magnetic resonance imaging velocity data.
    Oyre S; Ringgaard S; Kozerke S; Paaske WP; Erlandsen M; Boesiger P; Pedersen EM
    J Am Coll Cardiol; 1998 Jul; 32(1):128-34. PubMed ID: 9669260
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Anisotropic adaptive finite element method for modelling blood flow.
    Müller J; Sahni O; Li X; Jansen KE; Shephard MS; Taylor CA
    Comput Methods Biomech Biomed Engin; 2005 Oct; 8(5):295-305. PubMed ID: 16298851
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Three-dimensional steady flow through a bifurcation.
    Yung CN; De Witt KJ; Keith TG
    J Biomech Eng; 1990 May; 112(2):189-97. PubMed ID: 2345450
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wall shear stress estimates in coronary artery constrictions.
    Back LH; Crawford DW
    J Biomech Eng; 1992 Nov; 114(4):515-20. PubMed ID: 1487905
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Numerical simulation of steady flow in a model of the aortic bifurcation.
    Thiriet M; Pares C; Saltel E; Hecht F
    J Biomech Eng; 1992 Feb; 114(1):40-9. PubMed ID: 1491585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.