These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
729 related articles for article (PubMed ID: 15621745)
1. Stable isotope biogeochemistry of the sulfur cycle in modern marine sediments: I. Seasonal dynamics in a temperate intertidal sandy surface sediment. Böttcher M; Hespenheide B; Brumsack HJ; Bosselmann K Isotopes Environ Health Stud; 2004 Dec; 40(4):267-83. PubMed ID: 15621745 [TBL] [Abstract][Full Text] [Related]
2. δ(34)S values in recent sea sediments and their significance using several sediment profiles from the western Baltic Sea. Hartmann M; Nielsen H Isotopes Environ Health Stud; 2012; 48(1):7-32. PubMed ID: 22352384 [TBL] [Abstract][Full Text] [Related]
3. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Habicht KS; Canfield DE Geochim Cosmochim Acta; 1997 Dec; 61(24):5351-61. PubMed ID: 11541664 [TBL] [Abstract][Full Text] [Related]
4. [Microbial sulfate reduction in sediments of the coastal zone and littoral of the Kandalaksha bay of the White sea]. Savvichev AS; Rusanov II; Iusupov SK; Baĭramov IT; Pimenov NV; Lein AIu; Ivanov MV Mikrobiologiia; 2003; 72(4):535-46. PubMed ID: 14526546 [TBL] [Abstract][Full Text] [Related]
5. Comment on "Early Archaean microorganisms preferred elemental sulfur, not sulfate". Bao H; Sun T; Kohl I; Peng Y Science; 2008 Mar; 319(5868):1336; author reply 1336. PubMed ID: 18323434 [TBL] [Abstract][Full Text] [Related]
6. The Archean sulfur cycle and the early history of atmospheric oxygen. Canfield DE; Habicht KS; Thamdrup B Science; 2000 Apr; 288(5466):658-61. PubMed ID: 10784446 [TBL] [Abstract][Full Text] [Related]
7. Linking sedimentary sulfur and iron biogeochemistry to growth patterns of a cold-water coral mound in the Porcupine Basin, S.W. Ireland (IODP Expedition 307). Wehrmann LM; Titschack J; Böttcher ME; Ferdelman TG Geobiology; 2015 Sep; 13(5):424-42. PubMed ID: 26059346 [TBL] [Abstract][Full Text] [Related]
8. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment. Baldwin DS; Mitchell A Water Res; 2012 Mar; 46(4):965-74. PubMed ID: 22204939 [TBL] [Abstract][Full Text] [Related]
9. Geochemical and stable isotopic constraints on the generation and passive treatment of acidic, Fe-SO4 rich waters. Matthies R; Aplin AC; Boyce AJ; Jarvis AP Sci Total Environ; 2012 Mar; 420():238-49. PubMed ID: 22326322 [TBL] [Abstract][Full Text] [Related]
10. Oceanic and Sedimentary Microbial Sulfur Cycling Controlled by Local Organic Matter Flux During the Ediacaran Shuram Excursion in the Three Gorges Area, South China. Matsu'ura F; Sawaki Y; Komiya T; Han J; Maruyama S; Ushikubo T; Shimizu K; Ueno Y Geobiology; 2024; 22(5):e12617. PubMed ID: 39295594 [TBL] [Abstract][Full Text] [Related]
11. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934 [TBL] [Abstract][Full Text] [Related]
12. Nutrient fluxes and sulfur cycling in the organic-rich sediment of Makirina Bay (Central Dalmatia, Croatia). Lojen S; Ogrinc N; Dolenec T; Vokal B; Szaran J; Mihelcić G; Branica M Sci Total Environ; 2004 Jul; 327(1-3):265-84. PubMed ID: 15172586 [TBL] [Abstract][Full Text] [Related]
13. Pathways of carbon oxidation in continental margin sediments off central Chile. Thamdrup B; Canfield DE Limnol Oceanogr; 1996 Dec; 41(8):1629-50. PubMed ID: 11540503 [TBL] [Abstract][Full Text] [Related]
14. Novel sulfur isotope analyses constrain sulfurized porewater fluxes as a minor component of marine dissolved organic matter. Phillips AA; White ME; Seidel M; Wu F; Pavia FF; Kemeny PC; Ma AC; Aluwihare LI; Dittmar T; Sessions AL Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2209152119. PubMed ID: 36201540 [TBL] [Abstract][Full Text] [Related]
15. Bacteria in gel probes: comparison of the activity of immobilized sulfate-reducing bacteria with in situ sulfate reduction in a wetland sediment. Edenborn HM; Brickett LA J Microbiol Methods; 2001 Jul; 46(1):51-62. PubMed ID: 11412913 [TBL] [Abstract][Full Text] [Related]
16. Sulphur diagenesis in the sediments of the Kiel Bight, SW Baltic Sea, as reflected by multiple stable sulphur isotopes. Strauss H; Bast R; Cording A; Diekrup D; Fugmann A; Garbe-Schönberg D; Lutter A; Oeser M; Rabe K; Reinke D; Teichert BM; Westernströer U Isotopes Environ Health Stud; 2012; 48(1):166-79. PubMed ID: 22303924 [TBL] [Abstract][Full Text] [Related]
17. Stable isotope fractionation related to technically enhanced bacterial sulphate degradation in lignite mining sediments. Knöller K; Jeschke C; Simon A; Gast M; Hoth N Isotopes Environ Health Stud; 2012; 48(1):76-88. PubMed ID: 22092249 [TBL] [Abstract][Full Text] [Related]
18. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Mussmann M; Ishii K; Rabus R; Amann R Environ Microbiol; 2005 Mar; 7(3):405-18. PubMed ID: 15683401 [TBL] [Abstract][Full Text] [Related]
19. [Microbiological and isotopic geochemical investigation of Lake Kislo-Sladkoe, a meromictic water body at the Kandalaksha Bay Shore (White Sea)]. Savvichev AS; Lunina ON; Rusanov II; Zakharova EE; Veslopolova EF; Ivanov MV Mikrobiologiia; 2014; 83(2):191-203. PubMed ID: 25423723 [TBL] [Abstract][Full Text] [Related]
20. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Canfield DE; Thamdrup B; Hansen JW Geochim Cosmochim Acta; 1993 Aug; 57(16):3867-83. PubMed ID: 11537734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]