BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 1562273)

  • 21. The interaction of adriamycin with cardiolipin in model and rat liver mitochondrial membranes.
    Nicolay K; Timmers RJ; Spoelstra E; Van der Neut R; Fok JJ; Huigen YM; Verkleij AJ; De Kruijff B
    Biochim Biophys Acta; 1984 Dec; 778(2):359-71. PubMed ID: 6498197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ethylazinphos interaction with membrane lipid organization induces increase of proton permeability and impairment of mitochondrial bioenergetic functions.
    Videira RA; Antunes-Madeira MC; Madeira VM
    Toxicol Appl Pharmacol; 2001 Sep; 175(3):209-16. PubMed ID: 11559019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The food additive BHA modifies energy metabolism in the perfused rat liver.
    de Oliveira Pateis V; Bracht L; Dos Santos Castro L; Bueno Franco Salla G; Comar JF; Valderrama Parizotto A; Peralta RM; Bracht A
    Toxicol Lett; 2018 Dec; 299():191-200. PubMed ID: 30308228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of polyunsaturated fatty acids deficiency on oxidative phosphorylation in rat liver mitochondria.
    Fontaine EM; Moussa M; Devin A; Garcia J; Ghisolfi J; Rigoulet M; Leverve XM
    Biochim Biophys Acta; 1996 Sep; 1276(3):181-7. PubMed ID: 8856103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [The effect of butylhydroxyanisole, an antioxidant, on oxidative phosphorylation of myocardial mitochondria in experimental ischemia].
    Kovácsová B; Pazin-Hricková E; Csabáková L; Svec P
    Ceska Slov Farm; 1994 Feb; 43(1):18-21. PubMed ID: 8143327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uncoupling of oxidative phosphorylation. 1. Protonophoric effects account only partially for uncoupling.
    Luvisetto S; Pietrobon D; Azzone GF
    Biochemistry; 1987 Nov; 26(23):7332-8. PubMed ID: 2827753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional efficiency of mitochondrial membrane of rats with hepatic chronic iron overload.
    Masini A; Trenti T; Ventura E; Ceccarelli-Stanzani D; Muscatello U
    Biochem Biophys Res Commun; 1984 Oct; 124(2):462-9. PubMed ID: 6548629
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of 2(3)-tert-butyl-4-hydroxyanisole (BHA) on in situ mitochondria of Trypanosoma cruzi.
    Aldunate J; Coloma-Torres L; Spencer P; Morello A; Ojeda JM; Repetto Y
    FEBS Lett; 1992 May; 303(1):73-6. PubMed ID: 1592119
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism accounting for the induction of nonspecific permeability of the inner mitochondrial membrane by hydroperoxides.
    Novgorodov SA; Gudz TI; Kushnareva YE; Roginsky VA; Kudrjashov YB
    Biochim Biophys Acta; 1991 Jun; 1058(2):242-8. PubMed ID: 2049374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolism of 3-tert-butyl-4-hydroxyanisole to 3-tert-butyl-4,5-dihydroxyanisole by rat liver microsomes.
    Armstrong KE; Wattenberg LW
    Cancer Res; 1985 Apr; 45(4):1507-10. PubMed ID: 3978617
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of protein deficiency and Tween 60 on the pharmacokinetics of butylated hydroxyanisole and metabolites in male Sprague-Dawley rats.
    Kangsadalampai K; Sharma RP; Taylor MJ; Salunkhe DK
    Drug Nutr Interact; 1986; 4(3):289-97. PubMed ID: 3956389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Feloran (diclofenac sodium) on the oxidative phosphorylation of rat liver mitochondria.
    Tomov T; Velichkova-Markova S
    Acta Physiol Pharmacol Bulg; 1983; 9(1):66-72. PubMed ID: 6624493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The action of cyclodiene pesticides on oxidative phosphorylation in rat liver mitochondria.
    Nelson BD
    Biochem Pharmacol; 1975 Aug; 24(16):1485-90. PubMed ID: 127584
    [No Abstract]   [Full Text] [Related]  

  • 34. Multiple relationships between rate of oxidative phosphorylation and delta microH in rat liver mitochondria.
    Zoratti M; Petronilli V
    FEBS Lett; 1985 Dec; 193(2):276-82. PubMed ID: 4065342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes.
    Porter RK; Brand MD
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):379-82. PubMed ID: 7654171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dependence of flux size and efficiency of oxidative phosphorylation on external osmolarity in isolated rat liver mitochondria: role of adenine nucleotide carrier.
    Devin A; Guérin B; Rigoulet M
    Biochim Biophys Acta; 1996 Jan; 1273(1):13-20. PubMed ID: 8573591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences.
    Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M
    Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Near thermodynamic equilibrium of oxidative phosphorylation by inverted inner membrane vesicles of rat liver mitochondria.
    Lemasters JJ
    FEBS Lett; 1980 Jan; 110(1):96-100. PubMed ID: 7353670
    [No Abstract]   [Full Text] [Related]  

  • 39. Unique relationships between the rates of oxidation and phosphorylation and the protonmotive force in rat-liver mitochondria.
    Woelders H; van der Velden T; van Dam K
    Biochim Biophys Acta; 1988 Jun; 934(1):123-34. PubMed ID: 2837288
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolomic analysis reveals mechanism of antioxidant butylated hydroxyanisole on lipid accumulation in Crypthecodinium cohnii.
    Sui X; Niu X; Shi M; Pei G; Li J; Chen L; Wang J; Zhang W
    J Agric Food Chem; 2014 Dec; 62(51):12477-84. PubMed ID: 25436856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.