BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 1562274)

  • 1. Vacuolar acidification and chloroquine sensitivity in Plasmodium falciparum.
    Bray PG; Howells RE; Ward SA
    Biochem Pharmacol; 1992 Mar; 43(6):1219-27. PubMed ID: 1562274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A verapamil-sensitive chloroquine-associated H+ leak from the digestive vacuole in chloroquine-resistant malaria parasites.
    Lehane AM; Hayward R; Saliba KJ; Kirk K
    J Cell Sci; 2008 May; 121(Pt 10):1624-32. PubMed ID: 18445688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and characterization of a vacuolar ATPase A subunit homologue from Plasmodium falciparum.
    Karcz SR; Herrmann VR; Cowman AF
    Mol Biochem Parasitol; 1993 Apr; 58(2):333-44. PubMed ID: 8479458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digestive vacuolar pH of intact intraerythrocytic P. falciparum either sensitive or resistant to chloroquine.
    Dzekunov SM; Ursos LM; Roepe PD
    Mol Biochem Parasitol; 2000 Sep; 110(1):107-24. PubMed ID: 10989149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced lysosomal acidification leads to increased chloroquine accumulation in CHO cells expressing the pfmdr1 gene.
    van Es HH; Renkema H; Aerts H; Schurr E
    Mol Biochem Parasitol; 1994 Dec; 68(2):209-19. PubMed ID: 7739667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATPase activity of purified plasma membranes and digestive vacuoles from Plasmodium falciparum.
    Elandalloussi LM; Adams B; Smith PJ
    Mol Biochem Parasitol; 2005 May; 141(1):49-56. PubMed ID: 15811526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid chloroquine efflux phenotype in both chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum. A correlation of chloroquine sensitivity with energy-dependent drug accumulation.
    Bray PG; Howells RE; Ritchie GY; Ward SA
    Biochem Pharmacol; 1992 Oct; 44(7):1317-24. PubMed ID: 1417955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amodiaquine accumulation in Plasmodium falciparum as a possible explanation for its superior antimalarial activity over chloroquine.
    Hawley SR; Bray PG; Park BK; Ward SA
    Mol Biochem Parasitol; 1996 Sep; 80(1):15-25. PubMed ID: 8885219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of chloroquine and verapamil on digestive vacuolar pH of P. falciparum either sensitive or resistant to chloroquine.
    Ursos LM; Dzekunov SM; Roepe PD
    Mol Biochem Parasitol; 2000 Sep; 110(1):125-34. PubMed ID: 10989150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake of [3H]chloroquine by drug-sensitive and -resistant strains of the human malaria parasite Plasmodium falciparum.
    Geary TG; Jensen JB; Ginsburg H
    Biochem Pharmacol; 1986 Nov; 35(21):3805-12. PubMed ID: 3535803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory Mechanisms of DHA/CQ on pH and Iron Homeostasis of Erythrocytic Stage Growth of
    Tang T; Xu W; Ma J; Wang H; Cui Z; Jiang T; Li C
    Molecules; 2019 May; 24(10):. PubMed ID: 31137574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 2-amino quinoline, 5-(3-(2-(7-chloroquinolin-2-yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-dithiaoctanoic acid, interacts with PfMDR1 and inhibits its drug transport in Plasmodium falciparum.
    Edaye S; Reiling SJ; Leimanis ML; Wunderlich J; Rohrbach P; Georges E
    Mol Biochem Parasitol; 2014 Jun; 195(1):34-42. PubMed ID: 24914817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pH of the digestive vacuole of Plasmodium falciparum is not associated with chloroquine resistance.
    Hayward R; Saliba KJ; Kirk K
    J Cell Sci; 2006 Mar; 119(Pt 6):1016-25. PubMed ID: 16492710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Redox-Active Fluorescent pH Indicator for Detecting Plasmodium falciparum Strains with Reduced Responsiveness to Quinoline Antimalarial Drugs.
    Jida M; Sanchez CP; Urgin K; Ehrhardt K; Mounien S; Geyer A; Elhabiri M; Lanzer M; Davioud-Charvet E
    ACS Infect Dis; 2017 Feb; 3(2):119-131. PubMed ID: 28183182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efflux of chloroquine from Plasmodium falciparum: mechanism of chloroquine resistance.
    Krogstad DJ; Gluzman IY; Kyle DE; Oduola AM; Martin SK; Milhous WK; Schlesinger PH
    Science; 1987 Nov; 238(4831):1283-5. PubMed ID: 3317830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pH on in vitro potency of amantadine against Plasmodium falciparum.
    Evans SG; Havlik I
    Am J Trop Med Hyg; 1996 Mar; 54(3):232-6. PubMed ID: 8600756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake and efflux of chloroquine by chloroquine-resistant Plasmodium falciparum clones recently isolated in Africa.
    Bayoumi RA; Babiker HA; Arnot DE
    Acta Trop; 1994 Nov; 58(2):141-9. PubMed ID: 7887339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative pH measurements in Plasmodium falciparum-infected erythrocytes using pHluorin.
    Kuhn Y; Rohrbach P; Lanzer M
    Cell Microbiol; 2007 Apr; 9(4):1004-13. PubMed ID: 17381432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic modelling of chloroquine uptake by malaria-infected erythrocytes. Assessment of the factors that may determine drug resistance.
    Ginsburg H; Stein WD
    Biochem Pharmacol; 1991 May; 41(10):1463-70. PubMed ID: 1826839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-vitro antimalarial activity of azithromycin against chloroquine sensitive and chloroquine resistant Plasmodium falciparum.
    Biswas S
    J Postgrad Med; 2001; 47(4):240-3. PubMed ID: 11832638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.