These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 15623026)

  • 1. [Influence of magnetic field on membrane flux and CaCO3 crystallization in the unstirred dead-end NF process].
    Zhu AN; Zhu WP; Wang XL
    Huan Jing Ke Xue; 2004 Sep; 25(5):70-4. PubMed ID: 15623026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative study of the effect of electromagnetic field on scale deposition on nanofiltration membranes via UTDR.
    Li J; Liu J; Yang T; Xiao C
    Water Res; 2007 Dec; 41(20):4595-610. PubMed ID: 17631375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The negative rejection of H+ in NF of carbonate solution and its influences on membrane performance.
    Zhu A; Long F; Wang X; Zhu W; Ma J
    Chemosphere; 2007 Apr; 67(8):1558-65. PubMed ID: 17250866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fouling characteristics of NF and RO operated for removal of dissolved matter from groundwater.
    Gwon EM; Yu MJ; Oh HK; Ylee YH
    Water Res; 2003 Jul; 37(12):2989-97. PubMed ID: 12767302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scale formation in NF/RO: mechanism and control.
    Lee S; Lee CH
    Water Sci Technol; 2005; 51(6-7):267-75. PubMed ID: 16003986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of fouling resistant nanofiltration and reverse osmosis membranes for dyeing wastewater effluent treatment.
    Myung SW; Choi IH; Lee SH; Kim IC; Lee KH
    Water Sci Technol; 2005; 51(6-7):159-64. PubMed ID: 16003974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of dairy wastewater by two-stage membrane operation with ultrafiltration and nanofiltration.
    Gong YW; Zhang HX; Cheng XN
    Water Sci Technol; 2012; 65(5):915-9. PubMed ID: 22339027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of operational parameters on cake formation of CaSO4 in nanofiltration.
    Lin CJ; Shirazi S; Rao P; Agarwal S
    Water Res; 2006 Feb; 40(4):806-16. PubMed ID: 16427114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic field on fouling control of ultrafiltration membranes applied in treatment of a synthetic textile effluent.
    Carlesso F; Zin G; de Souza SM; Luccio MD; de Souza AA; Oliveira JV
    Environ Technol; 2016; 37(8):952-9. PubMed ID: 26496410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes.
    Hoek EM; Elimelech M
    Environ Sci Technol; 2003 Dec; 37(24):5581-8. PubMed ID: 14717167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of coliphages in secondary effluent by microfiltration-mechanisms of removal and impact of operating parameters.
    Farahbakhsh K; Smith DW
    Water Res; 2004 Feb; 38(3):585-92. PubMed ID: 14723927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of clindamycin from fermentation wastewater with nanofiltration membranes.
    Zhu A; Zhu W; Wu Z; Jing Y
    Water Res; 2003 Sep; 37(15):3718-32. PubMed ID: 12867340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of membrane fouling for in-line filtration of oil sands process-affected water: the effects of pretreatment conditions.
    Kim ES; Liu Y; Gamal El-Din M
    Environ Sci Technol; 2012 Mar; 46(5):2877-84. PubMed ID: 22279959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving very low mercury levels in refinery wastewater by membrane filtration.
    Urgun-Demirtas M; Benda PL; Gillenwater PS; Negri MC; Xiong H; Snyder SW
    J Hazard Mater; 2012 May; 215-216():98-107. PubMed ID: 22410725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the effect of humic acids and phenol on adsorption-ultrafiltration process performance.
    Mozia S; Tomaszewska M; Morawski AW
    Water Res; 2005; 39(2-3):501-9. PubMed ID: 15644259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes.
    Karnik BS; Davies SH; Chen KC; Jaglowski DR; Baumann MJ; Masten SJ
    Water Res; 2005 Feb; 39(4):728-34. PubMed ID: 15707646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of ferric coagulant on gypsum scaling and ion interception efficiency in nanofiltration at different pH values: Performance and mechanism.
    Lin D; Bai L; Gan Z; Zhao J; Li G; Aminabhavi TM; Liang H
    Water Res; 2020 May; 175():115695. PubMed ID: 32172057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical flux and chemical cleaning-in-place during the long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment.
    Wei CH; Huang X; Ben Aim R; Yamamoto K; Amy G
    Water Res; 2011 Jan; 45(2):863-71. PubMed ID: 20947121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of operating parameters on spiramycin removal by nanofiltration membrane.
    Zhao C; Fan W; Wang T; Hou D; Luan Z
    Water Sci Technol; 2013; 68(7):1512-9. PubMed ID: 24135099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.