These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 15623044)

  • 1. [Isolation of heterotrophic microorganism and its role in bioleaching of heavy metals from tannery sludge].
    Wang SM; Zhou LX; Huang FY; Fang D
    Huan Jing Ke Xue; 2004 Sep; 25(5):153-7. PubMed ID: 15623044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterotrophic microorganism Rhodotorula mucilaginosa R30 improves tannery sludge bioleaching through elevating dissolved CO2 and extracellular polymeric substances levels in bioleach solution as well as scavenging toxic DOM to Acidithiobacillus species.
    Wang S; Zheng G; Zhou L
    Water Res; 2010 Oct; 44(18):5423-31. PubMed ID: 20633920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An acid-tolerant heterotrophic microorganism role in improving tannery sludge bioleaching conducted in successive multibatch reaction systems.
    Zheng G; Zhou L; Wang S
    Environ Sci Technol; 2009 Jun; 43(11):4151-6. PubMed ID: 19569344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of an indigenous iron-oxidizing bacterium and its effectiveness in bioleaching heavy metals from anaerobically digested sewage sludge.
    Gu XY; Wong JW
    Environ Technol; 2004 Aug; 25(8):889-97. PubMed ID: 15366556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Removal of Cr from tannery sludge by acidophilic Thiobacilli].
    Zhou LX; Fang D; Zhou SG; Wang DZ; Wang SM
    Huan Jing Ke Xue; 2004 Jan; 25(1):62-6. PubMed ID: 15330423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal removal from contaminated sludge for land application: a review.
    Babel S; del Mundo Dacera D
    Waste Manag; 2006; 26(9):988-1004. PubMed ID: 16298121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Cr bioleaching efficiency from tannery sludge with coinoculation of Acidithiobacillus thiooxidans TS6 and Brettanomyces B65 in an air-lift reactor.
    Fang D; Zhou LX
    Chemosphere; 2007 Sep; 69(2):303-10. PubMed ID: 17537479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Recovery of copper from sewage sludge by bioleaching-solvent extraction-electrodeposition process].
    Chen HP; Zhou LX; Wang SM; Liang JR
    Huan Jing Ke Xue; 2009 Nov; 30(11):3364-70. PubMed ID: 20063755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans.
    Wang YS; Pan ZY; Lang JM; Xu JM; Zheng YG
    J Hazard Mater; 2007 Aug; 147(1-2):319-24. PubMed ID: 17275185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of anaerobic digestion and initial pH on metal bioleaching from sewage sludge.
    Villar LD; Garcia O
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(2):211-22. PubMed ID: 16423726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioleaching of heavy metals from sewage sludge: a review.
    Pathak A; Dastidar MG; Sreekrishnan TR
    J Environ Manage; 2009 Jun; 90(8):2343-53. PubMed ID: 19303195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioleaching of Cr from tannery sludge: the effects of initial acid addition and recycling of acidified bioleached sludge.
    Zhou LX; Fang D; Wang SM; Wong JW; Wang DZ
    Environ Technol; 2005 Mar; 26(3):277-84. PubMed ID: 15881024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of substrate concentration on the bioleaching of heavy metals from sewage sludge.
    Chen YX; Hua YM; Zhang SH
    J Environ Sci (China); 2004; 16(5):788-92. PubMed ID: 15559813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of temperature on bioleaching of Cr from tannery sludge].
    Fang D; Zhou LX
    Huan Jing Ke Xue; 2006 Jul; 27(7):1455-8. PubMed ID: 16881329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Removal of Cr from tannery sludge by bioleaching in air-lift reactor: a pilot study].
    Chen H; Zhou LX; Li C
    Huan Jing Ke Xue; 2007 Sep; 28(9):2046-51. PubMed ID: 17990555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of inhibitory substances in sludge by Galactomyces sp. Z3 and the role of its extracellular polymeric substances in improving bioleaching.
    Zhou J; Zheng G; Wong JW; Zhou L
    Bioresour Technol; 2013 Mar; 132():217-23. PubMed ID: 23411451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic bioleaching of metals from waste activated sludge.
    Meulepas RJ; Gonzalez-Gil G; Teshager FM; Witharana A; Saikaly PE; Lens PN
    Sci Total Environ; 2015 May; 514():60-7. PubMed ID: 25659306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced heavy metal bioleaching efficiencies from anaerobically digested sewage sludge with coinoculation of Acidithiobacillus ferrooxidans ANYL-1 and Blastoschizomyces capitatus Y5.
    Wong JW; Gu XY
    Water Sci Technol; 2004; 50(9):83-9. PubMed ID: 15580998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid process for heavy metal removal from wastewater sludge.
    Drogui P; Blais JF; Mercier G
    Water Environ Res; 2005; 77(4):372-80. PubMed ID: 16121505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.