BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 15623278)

  • 1. Preconcentration of proteins on microfluidic devices using porous silica membranes.
    Foote RS; Khandurina J; Jacobson SC; Ramsey JM
    Anal Chem; 2005 Jan; 77(1):57-63. PubMed ID: 15623278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated preconcentration SDS-PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels.
    Hatch AV; Herr AE; Throckmorton DJ; Brennan JS; Singh AK
    Anal Chem; 2006 Jul; 78(14):4976-84. PubMed ID: 16841920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated multilayer microfluidic device with a nanoporous membrane interconnect for online coupling of solid-phase extraction to microchip electrophoresis.
    Long Z; Shen Z; Wu D; Qin J; Lin B
    Lab Chip; 2007 Dec; 7(12):1819-24. PubMed ID: 18030406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfabricated CE chip for DNA pre-concentration and separation utilizing a normally closed valve.
    Kuo CH; Wang JH; Lee GB
    Electrophoresis; 2009 Sep; 30(18):3228-35. PubMed ID: 19722201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-line preconcentration of protein in capillary electrophoresis with an end-column cellulose acetate-based porous membrane.
    Yang B; Zhang F; Tian H; Guan Y
    J Chromatogr A; 2006 Jun; 1117(2):214-8. PubMed ID: 16620845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of inorganic ions using microfluidic devices.
    Evenhuis CJ; Guijt RM; Macka M; Haddad PR
    Electrophoresis; 2004 Nov; 25(21-22):3602-24. PubMed ID: 15565711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-changing sacrificial materials for interfacing microfluidics with ion-permeable membranes to create on-chip preconcentrators and electric field gradient focusing microchips.
    Kelly RT; Li Y; Woolley AT
    Anal Chem; 2006 Apr; 78(8):2565-70. PubMed ID: 16615765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of nanoporous membranes for sample filtration/preconcentration in microchip electrophoresis.
    Long Z; Liu D; Ye N; Qin J; Lin B
    Electrophoresis; 2006 Dec; 27(24):4927-34. PubMed ID: 17117457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards single molecule analysis in PDMS microdevices: from the detection of ultra low dye concentrations to single DNA molecule studies.
    Ros A; Hellmich W; Duong T; Anselmetti D
    J Biotechnol; 2004 Aug; 112(1-2):65-72. PubMed ID: 15288941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated microfluidic device for solid-phase extraction coupled to micellar electrokinetic chromatography separation.
    Ramsey JD; Collins GE
    Anal Chem; 2005 Oct; 77(20):6664-70. PubMed ID: 16223254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic picoliter-scale translational spontaneous sample introduction for high-speed capillary electrophoresis.
    Zhang T; Fang Q; Du WB; Fu JL
    Anal Chem; 2009 May; 81(9):3693-8. PubMed ID: 19351143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Off-line integration of CE and MALDI-MS using a closed-open-closed microchannel system.
    Jacksén J; Frisk T; Redeby T; Parmar V; van der Wijngaart W; Stemme G; Emmer A
    Electrophoresis; 2007 Jul; 28(14):2458-65. PubMed ID: 17577881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High performance microfluidic capillary electrophoresis devices.
    Fu LM; Leong JC; Lin CF; Tai CH; Tsai CH
    Biomed Microdevices; 2007 Jun; 9(3):405-12. PubMed ID: 17487587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent developments in electrokinetically driven analysis on microfabricated devices.
    Bruin GJ
    Electrophoresis; 2000 Dec; 21(18):3931-51. PubMed ID: 11192117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of a direct capture immunoaffinity separation for C-reactive protein using a capillary-based microfluidic device.
    Peoples MC; Phillips TM; Karnes HT
    J Pharm Biomed Anal; 2008 Sep; 48(2):376-82. PubMed ID: 18178356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of microchannel geometry on preconcentration intensity in microfluidic chips with straight or convergent-divergent microchannels.
    Chen CL; Yang RJ
    Electrophoresis; 2012 Mar; 33(5):751-7. PubMed ID: 22522531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microchip separations of protein biotoxins using an integrated hand-held device.
    Fruetel JA; Renzi RF; Vandernoot VA; Stamps J; Horn BA; West JA; Ferko S; Crocker R; Bailey CG; Arnold D; Wiedenman B; Choi WY; Yee D; Shokair I; Hasselbrink E; Paul P; Rakestraw D; Padgen D
    Electrophoresis; 2005 Mar; 26(6):1144-54. PubMed ID: 15704246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of carbon dioxide on peak mode isotachophoresis: simultaneous preconcentration and separation.
    Khurana TK; Santiago JG
    Lab Chip; 2009 May; 9(10):1377-84. PubMed ID: 19417904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sample preconcentration by field amplification stacking for microchip-based capillary electrophoresis.
    Lichtenberg J; Verpoorte E; de Rooij NF
    Electrophoresis; 2001 Jan; 22(2):258-71. PubMed ID: 11288893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-line sample preconcentration and separation technique based on transient trapping in microchip micellar electrokinetic chromatography.
    Sueyoshi K; Kitagawa F; Otsuka K
    Anal Chem; 2008 Feb; 80(4):1255-62. PubMed ID: 18201071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.