These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15623302)

  • 1. Interfacial scattering at electrochemically fabricated atom-scale junctions between thin gold film electrodes in a microfluidic channel.
    Castle PJ; Bohn PW
    Anal Chem; 2005 Jan; 77(1):243-9. PubMed ID: 15623302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical control of stability and restructuring dynamics in Au-Ag-Au and Au-Cu-Au bimetallic atom-scale junctions.
    Shi P; Bohn PW
    ACS Nano; 2010 May; 4(5):2946-54. PubMed ID: 20394406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable atom-scale junctions on silicon fabricated by kinetically controlled electrochemical deposition and dissolution.
    Shi P; Bohn PW
    ACS Nano; 2008 Aug; 2(8):1581-8. PubMed ID: 19206360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly conducting π-conjugated molecular junctions covalently bonded to gold electrodes.
    Chen W; Widawsky JR; Vázquez H; Schneebeli ST; Hybertsen MS; Breslow R; Venkataraman L
    J Am Chem Soc; 2011 Nov; 133(43):17160-3. PubMed ID: 21939263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2005 Jun; 5(6):634-45. PubMed ID: 15915256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust Au-Ag-Au bimetallic atom-scale junctions fabricated by self-limited Ag electrodeposition at Au nanogaps.
    Hwang TW; Bohn PW
    ACS Nano; 2011 Oct; 5(10):8434-41. PubMed ID: 21928783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron transport and redox reactions in carbon-based molecular electronic junctions.
    McCreery RL; Wu J; Kalakodimi RP
    Phys Chem Chem Phys; 2006 Jun; 8(22):2572-90. PubMed ID: 16738711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of Au nanoparticles formed by in situ electrodeposition on direct electrochemistry of myoglobin loaded into layer-by-layer films of chitosan and silica nanoparticles.
    Guo X; Zheng D; Hu N
    J Phys Chem B; 2008 Dec; 112(48):15513-20. PubMed ID: 19006267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breaking mechanism of single molecular junctions formed by octanedithiol molecules and Au electrodes.
    Qi Y; Qin J; Zhang G; Zhang T
    J Am Chem Soc; 2009 Nov; 131(45):16418-22. PubMed ID: 19902977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array.
    Shadpour H; Hupert ML; Patterson D; Liu C; Galloway M; Stryjewski W; Goettert J; Soper SA
    Anal Chem; 2007 Feb; 79(3):870-8. PubMed ID: 17263312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic devices for energy conversion: planar integration and performance of a passive, fully immersed H2-O2 fuel cell.
    Mitrovski SM; Elliott LC; Nuzzo RG
    Langmuir; 2004 Aug; 20(17):6974-6. PubMed ID: 15301473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrodeposition of gold particles on aluminum substrates containing copper.
    Olson TS; Atanassov P; Brevnov DA
    J Phys Chem B; 2005 Jan; 109(3):1243-50. PubMed ID: 16851087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple electrochemical method for deposition and voltammetric inspection of silver particles at the liquid-liquid interface of a thin-film electrode.
    Mirceski V; Gulaboski R
    J Phys Chem B; 2006 Feb; 110(6):2812-20. PubMed ID: 16471890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical immunoassay on a microfluidic device with sequential injection and flushing functions.
    Nashida N; Satoh W; Fukuda J; Suzuki H
    Biosens Bioelectron; 2007 Jun; 22(12):3167-73. PubMed ID: 17383171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.
    Fu Q; Liu J
    J Phys Chem B; 2005 Jul; 109(28):13406-8. PubMed ID: 16852676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen switches and sensors fabricated by combining electropolymerization and Pd electrodeposition at microgap electrodes.
    Dasari R; Zamborini FP
    J Am Chem Soc; 2008 Dec; 130(48):16138-9. PubMed ID: 18998678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrooxidation of carbon monoxide and methanol on platinum-overlayer-coated gold nanoparticles: effects of film thickness.
    Kumar S; Zou S
    Langmuir; 2007 Jun; 23(13):7365-71. PubMed ID: 17521203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential-dependent restructuring and chemical noise at Au-Ag-Au atomic scale junctions.
    Hwang TW; Bohn PW
    ACS Nano; 2014 Feb; 8(2):1718-27. PubMed ID: 24417308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion-limited and advection-driven electrodeposition in a microfluidic channel.
    Wlasenko A; Soltani F; Zakopcan D; Sinton D; Steeves GM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021601. PubMed ID: 20365568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.