BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15623307)

  • 21. Development of isothermal TaqMan assays for detection of biothreat organisms.
    Tong Y; Tang W; Kim HJ; Pan X; Ranalli T; Kong H
    Biotechniques; 2008 Nov; 45(5):543-57. PubMed ID: 19007339
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Study on the internal control on polymerase chain reaction in Yersinia pestis detection].
    Zhang ZK; Hai R; Zhang EM; Yu DZ
    Zhonghua Liu Xing Bing Xue Za Zhi; 2005 Jan; 26(1):36-8. PubMed ID: 15921592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of five commercial nucleic acid extraction kits for their ability to inactivate Bacillus anthracis spores and comparison of DNA yields from spores and spiked environmental samples.
    Dauphin LA; Moser BD; Bowen MD
    J Microbiol Methods; 2009 Jan; 76(1):30-7. PubMed ID: 18824041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast identification of Yersinia pestis, Bacillus anthracis and Francisella tularensis based on conventional PCR.
    Zasada AA; Formińska K; Zacharczuk K
    Pol J Microbiol; 2013; 62(4):453-5. PubMed ID: 24730142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Indirect detection of Bacillus anthracis using real-time PCR to detect amplified gamma phage DNA.
    Reiman RW; Atchley DH; Voorhees KJ
    J Microbiol Methods; 2007 Mar; 68(3):651-3. PubMed ID: 17208322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of DNA extraction methods to detect bacterial targets in aerosol samples.
    Dunbar J; Gallegos-Graves V; Gans J; Morse SA; Pillai S; Anderson K; Hodge DR
    J Microbiol Methods; 2018 Oct; 153():48-53. PubMed ID: 30201412
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reevaluating limits of detection of 12 lateral flow immunoassays for the detection of Yersinia pestis, Francisella tularensis, and Bacillus anthracis spores using viable risk group-3 strains.
    Ziegler I; Vollmar P; Knüpfer M; Braun P; Stoecker K
    J Appl Microbiol; 2021 Apr; 130(4):1173-1180. PubMed ID: 32970936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simple method for the rapid removal of Bacillus anthracis spores from DNA preparations.
    Dauphin LA; Bowen MD
    J Microbiol Methods; 2009 Feb; 76(2):212-4. PubMed ID: 18996156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid, high-throughput, culture-based PCR methods to analyze samples for viable spores of Bacillus anthracis and its surrogates.
    Kane SR; Létant SE; Murphy GA; Alfaro TM; Krauter PW; Mahnke R; Legler TC; Raber E
    J Microbiol Methods; 2009 Mar; 76(3):278-84. PubMed ID: 19141303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis.
    Matero P; Pasanen T; Laukkanen R; Tissari P; Tarkka E; Vaara M; Skurnik M
    APMIS; 2009 Jan; 117(1):34-44. PubMed ID: 19161535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrical microarrays for highly sensitive detection of multiplex PCR products from biological agents.
    Elsholz B; Nitsche A; Achenbach J; Ellerbrok H; Blohm L; Albers J; Pauli G; Hintsche R; Wörl R
    Biosens Bioelectron; 2009 Feb; 24(6):1737-43. PubMed ID: 18954971
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biosecurity. Up in the air.
    Brown K
    Science; 2004 Aug; 305(5688):1228-9. PubMed ID: 15333816
    [No Abstract]   [Full Text] [Related]  

  • 33. Development of a real-time quantitative PCR assay to enumerate Yersinia pestis in fleas.
    Gabitzsch ES; Vera-Tudela R; Eisen RJ; Bearden SW; Gage KL; Zeidner NS
    Am J Trop Med Hyg; 2008 Jul; 79(1):99-101. PubMed ID: 18606771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of the Cepheid GeneXpert system for detecting Bacillus anthracis.
    Ulrich MP; Christensen DR; Coyne SR; Craw PD; Henchal EA; Sakai SH; Swenson D; Tholath J; Tsai J; Weir AF; Norwood DA
    J Appl Microbiol; 2006 May; 100(5):1011-6. PubMed ID: 16630001
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combination of biobarcode assay with on-chip capillary electrophoresis for ultrasensitive and multiplex biological agent detection.
    Cho M; Chung S; Jung JH; Rhie GE; Jeon JH; Seo TS
    Biosens Bioelectron; 2014 Nov; 61():172-6. PubMed ID: 24878840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using a bioaerosol personal sampler in combination with real-time PCR analysis for rapid detection of airborne viruses.
    Pyankov OV; Agranovski IE; Pyankova O; Mokhonova E; Mokhonov V; Safatov AS; Khromykh AA
    Environ Microbiol; 2007 Apr; 9(4):992-1000. PubMed ID: 17359271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA assays for detection, identification, and individualization of select agent microorganisms.
    Jones SW; Dobson ME; Francesconi SC; Schoske R; Crawford R
    Croat Med J; 2005 Aug; 46(4):522-9. PubMed ID: 16100754
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance evaluation of five commercial real-time PCR reagent systems using TaqMan assays for B. anthracis detection.
    Sohni Y; Kanjilal S; Kapur V
    Clin Biochem; 2008 May; 41(7-8):640-4. PubMed ID: 18242168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated methods for multiplexed pathogen detection.
    Straub TM; Dockendorff BP; Quiñonez-Díaz MD; Valdez CO; Shutthanandan JI; Tarasevich BJ; Grate JW; Bruckner-Lea CJ
    J Microbiol Methods; 2005 Sep; 62(3):303-16. PubMed ID: 15979746
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-time electrochemical monitoring of the polymerase chain reaction by mediated redox catalysis.
    Deféver T; Druet M; Rochelet-Dequaire M; Joannes M; Grossiord C; Limoges B; Marchal D
    J Am Chem Soc; 2009 Aug; 131(32):11433-41. PubMed ID: 19722651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.