BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15623504)

  • 1. A Methanocaldococcus jannaschii archaeal signature gene encodes for a 5-formaminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-monophosphate synthetase. A new enzyme in purine biosynthesis.
    Ownby K; Xu H; White RH
    J Biol Chem; 2005 Mar; 280(12):10881-7. PubMed ID: 15623504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure and function of 5-formaminoimidazole-4-carboxamide ribonucleotide synthetase from Methanocaldococcus jannaschii.
    Zhang Y; White RH; Ealick SE
    Biochemistry; 2008 Jan; 47(1):205-17. PubMed ID: 18069798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purine biosynthesis in the domain Archaea without folates or modified folates.
    White RH
    J Bacteriol; 1997 May; 179(10):3374-7. PubMed ID: 9150241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel function for the N-terminal nucleophile hydrolase fold demonstrated by the structure of an archaeal inosine monophosphate cyclohydrolase.
    Kang YN; Tran A; White RH; Ealick SE
    Biochemistry; 2007 May; 46(17):5050-62. PubMed ID: 17407260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanopyrazoles as analogs of purine precursors--I. Inhibitory effect on purine biosynthesis de novo.
    Spassova MK; Grancharov KC; Golovinsky EV
    Int J Biochem; 1984; 16(10):1091-4. PubMed ID: 6519347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic evidence for 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) as a negative effector of cytochrome terminal oxidase cbb3 production in Rhizobium etli.
    SoberĂ³n M; Lopez O; Miranda J; Tabche ML; Morera C
    Mol Gen Genet; 1997 May; 254(6):665-73. PubMed ID: 9202382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence and biosynthesis of 5-aminoimidazole-4-carboxamide ribonucleotide and N-(beta-D-ribofuranosyl)formamide 5'-phosphate in Methanobacterium thermoautotrophicum delta(H).
    White RH
    J Bacteriol; 1997 Jan; 179(2):563-6. PubMed ID: 8990314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental characterization of two archaeal inosine 5'-monophosphate cyclohydrolases.
    Hunter CA; Plymale NI; Smee KM; Sarisky CA
    PLoS One; 2019; 14(10):e0223983. PubMed ID: 31622427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radioassay of bifunctional 5-aminoimidazole-4-carboxamide ribotide transformylase-IMP cyclohydrolase by thin-layer chromatography.
    Szabados E; Christopherson RI
    Anal Biochem; 1994 Sep; 221(2):401-4. PubMed ID: 7810885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific features of L-histidine production by Escherichia coli concerned with feedback control of AICAR formation and inorganic phosphate/metal transport.
    Malykh EA; Butov IA; Ravcheeva AB; Krylov AA; Mashko SV; Stoynova NV
    Microb Cell Fact; 2018 Mar; 17(1):42. PubMed ID: 29544475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An iron(II) dependent formamide hydrolase catalyzes the second step in the archaeal biosynthetic pathway to riboflavin and 7,8-didemethyl-8-hydroxy-5-deazariboflavin.
    Grochowski LL; Xu H; White RH
    Biochemistry; 2009 May; 48(19):4181-8. PubMed ID: 19309161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural biology of the purine biosynthetic pathway.
    Zhang Y; Morar M; Ealick SE
    Cell Mol Life Sci; 2008 Nov; 65(23):3699-724. PubMed ID: 18712276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino-4-imidazolecarboxamide ribotide directly inhibits coenzyme A biosynthesis in Salmonella enterica.
    Bazurto JV; Downs DM
    J Bacteriol; 2014 Feb; 196(4):772-9. PubMed ID: 24296672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purine nucleotide production in normal and HPRT- cells.
    Page T
    Int J Biochem; 1989; 21(12):1377-81. PubMed ID: 2612726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of an Fe(2+)-dependent archaeal-specific GTP cyclohydrolase, MptA, from Methanocaldococcus jannaschii.
    Grochowski LL; Xu H; Leung K; White RH
    Biochemistry; 2007 Jun; 46(22):6658-67. PubMed ID: 17497938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purine biosynthesis in archaea: variations on a theme.
    Brown AM; Hoopes SL; White RH; Sarisky CA
    Biol Direct; 2011 Dec; 6():63. PubMed ID: 22168471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic flux in both the purine mononucleotide and histidine biosynthetic pathways can influence synthesis of the hydroxymethyl pyrimidine moiety of thiamine in Salmonella enterica.
    Allen S; Zilles JL; Downs DM
    J Bacteriol; 2002 Nov; 184(22):6130-7. PubMed ID: 12399482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of SAICAR synthase: an enzyme in the de novo pathway of purine nucleotide biosynthesis.
    Levdikov VM; Barynin VV; Grebenko AI; Melik-Adamyan WR; Lamzin VS; Wilson KS
    Structure; 1998 Mar; 6(3):363-76. PubMed ID: 9551557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidation of the substrate specificity, kinetic and catalytic mechanism of adenylosuccinate lyase from Plasmodium falciparum.
    Bulusu V; Srinivasan B; Bopanna MP; Balaram H
    Biochim Biophys Acta; 2009 Apr; 1794(4):642-54. PubMed ID: 19111634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between the catalytic sites of human bifunctional IMP synthase.
    Szabados E; Christopherson RI
    Int J Biochem Cell Biol; 1998 Aug; 30(8):933-42. PubMed ID: 9744084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.