These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 15623532)
1. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. Watanabe S; Kodaki T; Makino K J Biol Chem; 2005 Mar; 280(11):10340-9. PubMed ID: 15623532 [TBL] [Abstract][Full Text] [Related]
2. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Hou J; Shen Y; Li XP; Bao XM Lett Appl Microbiol; 2007 Aug; 45(2):184-9. PubMed ID: 17651216 [TBL] [Abstract][Full Text] [Related]
4. Various mutations by using yeast gene for protein-engineering. Watanabe S; Kodaki T; Makino K Nucleic Acids Symp Ser (Oxf); 2004; (48):197-8. PubMed ID: 17150546 [TBL] [Abstract][Full Text] [Related]
5. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479 [TBL] [Abstract][Full Text] [Related]
6. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B J Biotechnol; 2012 Apr; 158(4):192-202. PubMed ID: 21903144 [TBL] [Abstract][Full Text] [Related]
7. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. Bera AK; Ho NW; Khan A; Sedlak M J Ind Microbiol Biotechnol; 2011 May; 38(5):617-26. PubMed ID: 20714780 [TBL] [Abstract][Full Text] [Related]
8. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Watanabe S; Abu Saleh A; Pack SP; Annaluru N; Kodaki T; Makino K Microbiology (Reading); 2007 Sep; 153(Pt 9):3044-3054. PubMed ID: 17768247 [TBL] [Abstract][Full Text] [Related]
9. A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis. Khattab SM; Watanabe S; Saimura M; Kodaki T Biochem Biophys Res Commun; 2011 Jan; 404(2):634-7. PubMed ID: 21146502 [TBL] [Abstract][Full Text] [Related]
10. Critical residues for the coenzyme specificity of NAD+-dependent 15-hydroxyprostaglandin dehydrogenase. Cho H; Oliveira MA; Tai HH Arch Biochem Biophys; 2003 Nov; 419(2):139-46. PubMed ID: 14592457 [TBL] [Abstract][Full Text] [Related]
11. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695 [TBL] [Abstract][Full Text] [Related]
12. Site-directed mutagenesis of a yeast gene for improvement of enzyme thermostability. Annaluru N; Watanabe S; Saleh AA; Kodaki T; Makino K Nucleic Acids Symp Ser (Oxf); 2006; (50):281-2. PubMed ID: 17150927 [TBL] [Abstract][Full Text] [Related]
13. Thermostabilization of Pichia stipitis xylitol dehydrogenase by mutation of structural zinc-binding loop. Annaluru N; Watanabe S; Pack SP; Saleh AA; Kodaki T; Makino K J Biotechnol; 2007 May; 129(4):717-22. PubMed ID: 17350704 [TBL] [Abstract][Full Text] [Related]
14. Molecular evolutionary insight of structural zinc atom in yeast xylitol dehydrogenases and its application in bioethanol production by lignocellulosic biomass. Yoshiwara K; Watanabe S; Watanabe Y Sci Rep; 2023 Feb; 13(1):1920. PubMed ID: 36732376 [TBL] [Abstract][Full Text] [Related]
15. Expression of bifunctional enzymes with xylose reductase and xylitol dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation. Anderlund M; Rådström P; Hahn-Hägerdal B Metab Eng; 2001 Jul; 3(3):226-35. PubMed ID: 11461145 [TBL] [Abstract][Full Text] [Related]
16. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase. Watanabe S; Saleh AA; Pack SP; Annaluru N; Kodaki T; Makino K J Biotechnol; 2007 Jun; 130(3):316-9. PubMed ID: 17555838 [TBL] [Abstract][Full Text] [Related]
17. Key NAD+-binding residues in human 15-hydroxyprostaglandin dehydrogenase. Cho H; Hamza A; Zhan CG; Tai HH Arch Biochem Biophys; 2005 Jan; 433(2):447-53. PubMed ID: 15581601 [TBL] [Abstract][Full Text] [Related]
18. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH; Kodaki T; Park YC; Seo JH J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927 [TBL] [Abstract][Full Text] [Related]
19. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase. Khattab SM; Saimura M; Kodaki T J Biotechnol; 2013 Jun; 165(3-4):153-6. PubMed ID: 23578809 [TBL] [Abstract][Full Text] [Related]
20. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP. Wang JF; Wei DQ; Lin Y; Wang YH; Du HL; Li YX; Chou KC Biochem Biophys Res Commun; 2007 Jul; 359(2):323-9. PubMed ID: 17544374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]