These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 15623556)

  • 21. Mutations that change the position of the putative gamma-phosphate linker in the nucleotide binding domains of CFTR alter channel gating.
    Berger AL; Ikuma M; Hunt JF; Thomas PJ; Welsh MJ
    J Biol Chem; 2002 Jan; 277(3):2125-31. PubMed ID: 11788611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Review. ATP hydrolysis-driven gating in cystic fibrosis transmembrane conductance regulator.
    Muallem D; Vergani P
    Philos Trans R Soc Lond B Biol Sci; 2009 Jan; 364(1514):247-55. PubMed ID: 18957373
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of CFTR Cl- channel gating by ATP binding and hydrolysis.
    Ikuma M; Welsh MJ
    Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8675-80. PubMed ID: 10880569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the interactions between nucleotide binding domains and membrane spanning domains in cystic fibrosis transmembrane regulator: A molecular dynamic study.
    Belmonte L; Moran O
    Biochimie; 2015 Apr; 111():19-29. PubMed ID: 25640670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformational changes in the catalytically inactive nucleotide-binding site of CFTR.
    Csanády L; Mihályi C; Szollosi A; Töröcsik B; Vergani P
    J Gen Physiol; 2013 Jul; 142(1):61-73. PubMed ID: 23752332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An electrostatic interaction at the tetrahelix bundle promotes phosphorylation-dependent cystic fibrosis transmembrane conductance regulator (CFTR) channel opening.
    Wang W; Roessler BC; Kirk KL
    J Biol Chem; 2014 Oct; 289(44):30364-30378. PubMed ID: 25190805
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.
    Csanády L; Chan KW; Nairn AC; Gadsby DC
    J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CFTR gating II: Effects of nucleotide binding on the stability of open states.
    Bompadre SG; Cho JH; Wang X; Zou X; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2005 Apr; 125(4):377-94. PubMed ID: 15767296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating.
    Fu J; Ji HL; Naren AP; Kirk KL
    J Physiol; 2001 Oct; 536(Pt 2):459-70. PubMed ID: 11600681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating.
    Wang W; Linsdell P
    Biochim Biophys Acta; 2012 Mar; 1818(3):851-60. PubMed ID: 22234285
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strict coupling between CFTR's catalytic cycle and gating of its Cl- ion pore revealed by distributions of open channel burst durations.
    Csanády L; Vergani P; Gadsby DC
    Proc Natl Acad Sci U S A; 2010 Jan; 107(3):1241-6. PubMed ID: 19966305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation.
    Jih KY; Sohma Y; Hwang TC
    J Gen Physiol; 2012 Oct; 140(4):347-59. PubMed ID: 22966014
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Altering intracellular pH reveals the kinetic basis of intraburst gating in the CFTR Cl
    Chen JH; Xu W; Sheppard DN
    J Physiol; 2017 Feb; 595(4):1059-1076. PubMed ID: 27779763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chimeric constructs endow the human CFTR Cl- channel with the gating behavior of murine CFTR.
    Scott-Ward TS; Cai Z; Dawson ES; Doherty A; Da Paula AC; Davidson H; Porteous DJ; Wainwright BJ; Amaral MD; Sheppard DN; Boyd AC
    Proc Natl Acad Sci U S A; 2007 Oct; 104(41):16365-70. PubMed ID: 17913891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog.
    Bompadre SG; Li M; Hwang TC
    J Biol Chem; 2008 Feb; 283(9):5364-9. PubMed ID: 18167357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A stable ATP binding to the nucleotide binding domain is important for reliable gating cycle in an ABC transporter CFTR.
    Shimizu H; Yu YC; Kono K; Kubota T; Yasui M; Li M; Hwang TC; Sohma Y
    J Physiol Sci; 2010 Sep; 60(5):353-62. PubMed ID: 20628841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ATP-independent CFTR channel gating and allosteric modulation by phosphorylation.
    Wang W; Wu J; Bernard K; Li G; Wang G; Bevensee MO; Kirk KL
    Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3888-93. PubMed ID: 20133716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gating of the CFTR Cl- channel by ATP-driven nucleotide-binding domain dimerisation.
    Hwang TC; Sheppard DN
    J Physiol; 2009 May; 587(Pt 10):2151-61. PubMed ID: 19332488
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The H-loop in the second nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator is required for efficient chloride channel closing.
    Kloch M; Milewski M; Nurowska E; Dworakowska B; Cutting GR; Dołowy K
    Cell Physiol Biochem; 2010; 25(2-3):169-80. PubMed ID: 20110677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Involvement of F1296 and N1303 of CFTR in induced-fit conformational change in response to ATP binding at NBD2.
    Szollosi A; Vergani P; Csanády L
    J Gen Physiol; 2010 Oct; 136(4):407-23. PubMed ID: 20876359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.