BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 15623748)

  • 1. GC1 deletion prevents light-dependent arrestin translocation in mouse cone photoreceptor cells.
    Coleman JE; Semple-Rowland SL
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):12-6. PubMed ID: 15623748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoreceptor organization and rhythmic phagocytosis in the nile rat Arvicanthis ansorgei: a novel diurnal rodent model for the study of cone pathophysiology.
    Bobu C; Craft CM; Masson-Pevet M; Hicks D
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):3109-18. PubMed ID: 16799057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BBSome Component BBS5 Is Required for Cone Photoreceptor Protein Trafficking and Outer Segment Maintenance.
    Bales KL; Bentley MR; Croyle MJ; Kesterson RA; Yoder BK; Gross AK
    Invest Ophthalmol Vis Sci; 2020 Aug; 61(10):17. PubMed ID: 32776140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic manipulation of rod-cone differences in mouse retina.
    Morshedian A; Jiang Z; Radu RA; Fain GL; Sampath AP
    PLoS One; 2024; 19(5):e0300584. PubMed ID: 38709779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of rod photoreceptor function by farnesylated G-protein γ-subunits.
    Kolesnikov AV; Lobysheva E; Gnana-Prakasam JP; Kefalov VJ; Kisselev OG
    PLoS One; 2022; 17(8):e0272506. PubMed ID: 35939447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A null mutation in the photoreceptor guanylate cyclase gene causes the retinal degeneration chicken phenotype.
    Semple-Rowland SL; Lee NR; Van Hooser JP; Palczewski K; Baehr W
    Proc Natl Acad Sci U S A; 1998 Feb; 95(3):1271-6. PubMed ID: 9448321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autophagy supports survival and phototransduction protein levels in rod photoreceptors.
    Zhou Z; Doggett TA; Sene A; Apte RS; Ferguson TA
    Cell Death Differ; 2015 Mar; 22(3):488-98. PubMed ID: 25571975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frmpd1 Facilitates Trafficking of G-Protein Transducin and Modulates Synaptic Function in Rod Photoreceptors of Mammalian Retina.
    Campla CK; Bocchero U; Strickland R; Nellissery J; Advani J; Ignatova I; Srivastava D; Aponte AM; Wang Y; Gumerson J; Martemyanov K; Artemyev NO; Pahlberg J; Swaroop A
    eNeuro; 2022; 9(5):. PubMed ID: 36180221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phototransduction in retinal cones: Analysis of parameter importance.
    Klaus C; Caruso G; Gurevich VV; Hamm HE; Makino CL; DiBenedetto E
    PLoS One; 2021; 16(10):e0258721. PubMed ID: 34710119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinase C activity and light sensitivity of single amphibian rods.
    Xiong W; Nakatani K; Ye B; Yau K
    J Gen Physiol; 1997 Oct; 110(4):441-52. PubMed ID: 9379174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative analysis of gene and protein expression in chronic and acute models of photoreceptor degeneration in adult zebrafish.
    Kramer AC; Carthage J; Berry Y; Gurdziel K; Cook TA; Thummel R
    Front Cell Dev Biol; 2023; 11():1233269. PubMed ID: 37745292
    [No Abstract]   [Full Text] [Related]  

  • 12. The Absence of FAIM Leads to a Delay in Dark Adaptation and Hampers Arrestin-1 Translocation upon Light Reception in the Retina.
    Sirés A; Pazo-González M; López-Soriano J; Méndez A; de la Rosa EJ; de la Villa P; Comella JX; Hernández-Sánchez C; Solé M
    Cells; 2023 Feb; 12(3):. PubMed ID: 36766830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mouse model of cone photoreceptor function loss
    Naggert ASEN; Collin GB; Wang J; Krebs MP; Chang B
    Front Mol Neurosci; 2022; 15():1080136. PubMed ID: 36698779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy.
    Dinculescu A; Stupay RM; Deng WT; Dyka FM; Min SH; Boye SL; Chiodo VA; Abrahan CE; Zhu P; Li Q; Strettoi E; Novelli E; Nagel-Wolfrum K; Wolfrum U; Smith WC; Hauswirth WW
    PLoS One; 2016; 11(2):e0148874. PubMed ID: 26881841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leber congenital amaurosis caused by mutations in GUCY2D.
    Boye SE
    Cold Spring Harb Perspect Med; 2014 Sep; 5(1):a017350. PubMed ID: 25256176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights gained from gene therapy in animal models of retGC1 deficiency.
    Boye SE
    Front Mol Neurosci; 2014; 7():43. PubMed ID: 24860425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein sorting, targeting and trafficking in photoreceptor cells.
    Pearring JN; Salinas RY; Baker SA; Arshavsky VY
    Prog Retin Eye Res; 2013 Sep; 36():24-51. PubMed ID: 23562855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoreceptor signaling: supporting vision across a wide range of light intensities.
    Arshavsky VY; Burns ME
    J Biol Chem; 2012 Jan; 287(3):1620-6. PubMed ID: 22074925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term preservation of cones and improvement in visual function following gene therapy in a mouse model of leber congenital amaurosis caused by guanylate cyclase-1 deficiency.
    Mihelec M; Pearson RA; Robbie SJ; Buch PK; Azam SA; Bainbridge JW; Smith AJ; Ali RR
    Hum Gene Ther; 2011 Oct; 22(10):1179-90. PubMed ID: 21671801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene therapy regenerates protein expression in cone photoreceptors in Rpe65(R91W/R91W) mice.
    Kostic C; Crippa SV; Pignat V; Bemelmans AP; Samardzija M; Grimm C; Wenzel A; Arsenijevic Y
    PLoS One; 2011 Feb; 6(2):e16588. PubMed ID: 21304899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.