BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 15624181)

  • 21. Theory of band broadening during cycling temperature capillary electrophoresis.
    Laachi N; Dorfman KD
    Electrophoresis; 2007 Feb; 28(4):665-73. PubMed ID: 17253630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sample stacking in CZE using dynamic thermal junctions I. Analytes with low dpKa/dT crossing a single thermally induced pH junction in a BGE with high dpH/dT.
    Mandaji M; RĂ¼bensam G; Hoff RB; Hillebrand S; Carrilho E; Kist TL
    Electrophoresis; 2009 May; 30(9):1501-9. PubMed ID: 19350541
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sample stacking in CZE using dynamic thermal junctions II: analytes with high dpKa/dT crossing a single thermal junction in a BGE with low dpH/dT.
    Mandaji M; RĂ¼bensam G; Hoff RB; Hillebrand S; Carrilho E; Kist TL
    Electrophoresis; 2009 May; 30(9):1510-5. PubMed ID: 19350542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis.
    Ghosal S
    Electrophoresis; 2004 Jan; 25(2):214-28. PubMed ID: 14743475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study of Joule heating effects on temperature gradient in diverging microchannels for isoelectric focusing applications.
    Kates B; Ren CL
    Electrophoresis; 2006 May; 27(10):1967-76. PubMed ID: 16703632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimizing band width and resolution in micro-free flow electrophoresis.
    Fonslow BR; Bowser MT
    Anal Chem; 2006 Dec; 78(24):8236-44. PubMed ID: 17165812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels.
    Tang G; Yang C
    Electrophoresis; 2008 Mar; 29(5):1006-12. PubMed ID: 18306182
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electroosmotic control of chiral separation in capillary zone electrophoresis.
    Hong S; Lee CS
    Electrophoresis; 1995 Nov; 16(11):2132-6. PubMed ID: 8748745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrophoresis in the presence of gradients: I. Viscosity gradients.
    Guillouzic S; McCormick LC; Slater GW
    Electrophoresis; 2002 Jun; 23(12):1822-32. PubMed ID: 12116125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heat treatment of whole milk by the direct joule effect--experimental and numerical approaches to fouling mechanisms.
    Fillaudeau L; Winterton P; Leuliet JC; Tissier JP; Maury V; Semet F; Debreyne P; Berthou M; Chopard F
    J Dairy Sci; 2006 Dec; 89(12):4475-89. PubMed ID: 17106078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Revisit of Joule heating in CE: the contribution of surface conductance.
    Xuan X
    Electrophoresis; 2007 Aug; 28(17):2971-4. PubMed ID: 17668448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical and analytical solutions for the column length-dependent band broadening originating from axisymmetrical trans-column velocity gradients.
    Broeckhoven K; Desmet G
    J Chromatogr A; 2009 Feb; 1216(9):1325-37. PubMed ID: 19167000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical calculation of the retention enthalpy effect on the viscous heat dissipation band broadening in high performance liquid chromatography columns with a fixed wall temperature.
    Desmet G
    J Chromatogr A; 2006 May; 1116(1-2):89-96. PubMed ID: 16597444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of pressure drop, particle size and thermal conditions on retention and efficiency in supercritical fluid chromatography.
    Poe DP; Schroden JJ
    J Chromatogr A; 2009 Nov; 1216(45):7915-26. PubMed ID: 19767007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Change of migration time and separation window accompanied by field-enhanced sample stacking in capillary zone electrophoresis.
    Hirokawa T; Ikuta N; Yoshiyama T; Okamoto H
    Electrophoresis; 2001 Oct; 22(16):3444-8. PubMed ID: 11669524
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations.
    Maynes D; Tenny J; Webbd BW; Lee ML
    Electrophoresis; 2008 Feb; 29(3):549-60. PubMed ID: 18200632
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Density gradients in packed columns: II. Effects of density gradients on efficiency in supercritical fluid separations.
    Baker LR; Orton AW; Stark MA; Goates SR
    J Chromatogr A; 2009 Jul; 1216(29):5594-9. PubMed ID: 19539294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of Joule heating effect on temperature and pressure distribution in electrokinetic-driven microchannel flows.
    Chein R; Yang YC; Lin Y
    Electrophoresis; 2006 Feb; 27(3):640-9. PubMed ID: 16380954
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling the thermal behaviour of the low-thermal mass liquid chromatography system.
    Verstraeten M; Pursch M; Eckerle P; Luong J; Desmet G
    J Chromatogr A; 2011 Apr; 1218(16):2252-63. PubMed ID: 21377687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Taylor-Aris dispersion in temperature gradient focusing.
    Huber DE; Santiago JG
    Electrophoresis; 2007 Jul; 28(14):2333-44. PubMed ID: 17578841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.