These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 15624309)
1. Hypoxia in the androgen-dependent Shionogi model for prostate cancer at three stages. Skov K; Adomat H; Bowden M; Dragowska W; Gleave M; Koch CJ; Woo J; Yapp DT Radiat Res; 2004 Nov; 162(5):547-53. PubMed ID: 15624309 [TBL] [Abstract][Full Text] [Related]
2. Non-invasive evaluation of tumour hypoxia in the Shionogi tumour model for prostate cancer with 18F-EF5 and positron emission tomography. Yapp DT; Woo J; Kartono A; Sy J; Oliver T; Skov KA; Koch CJ; Adomat H; Dragowska WH; Fazli L; Ruth T; Adam MJ; Green D; Gleave M BJU Int; 2007 May; 99(5):1154-60. PubMed ID: 17309552 [TBL] [Abstract][Full Text] [Related]
3. Castration-induced up-regulation of insulin-like growth factor binding protein-5 potentiates insulin-like growth factor-I activity and accelerates progression to androgen independence in prostate cancer models. Miyake H; Pollak M; Gleave ME Cancer Res; 2000 Jun; 60(11):3058-64. PubMed ID: 10850457 [TBL] [Abstract][Full Text] [Related]
4. Antisense Bcl-2 oligodeoxynucleotides inhibit progression to androgen-independence after castration in the Shionogi tumor model. Miyake H; Tolcher A; Gleave ME Cancer Res; 1999 Aug; 59(16):4030-4. PubMed ID: 10463603 [TBL] [Abstract][Full Text] [Related]
6. In vivo measurement of the hypoxia marker EF5 in Shionogi tumours using (19)F magnetic resonance spectroscopy. Hoff MN; Yapp DT; Yung AC; Oliver TS; Kozlowski P Int J Radiat Biol; 2008 Mar; 84(3):237-42. PubMed ID: 18300024 [TBL] [Abstract][Full Text] [Related]
7. Castration-induced apoptosis of androgen-dependent shionogi carcinoma is associated with increased expression of genes encoding insulin-like growth factor-binding proteins. Nickerson T; Miyake H; Gleave ME; Pollak M Cancer Res; 1999 Jul; 59(14):3392-5. PubMed ID: 10416600 [TBL] [Abstract][Full Text] [Related]
8. Progression and selection in heterogeneous tumor composed of androgen-responsive Shionogi carcinoma 115 and its autonomous subline (Chiba subline 2). Ichikawa T; Akimoto S; Hayata I; Shimazaki J Cancer Res; 1989 Jan; 49(2):367-71. PubMed ID: 2910455 [TBL] [Abstract][Full Text] [Related]
9. Chemosensitization and delayed androgen-independent recurrence of prostate cancer with the use of antisense Bcl-2 oligodeoxynucleotides. Miayake H; Tolcher A; Gleave ME J Natl Cancer Inst; 2000 Jan; 92(1):34-41. PubMed ID: 10620631 [TBL] [Abstract][Full Text] [Related]
10. Targeting bcl-2 gene to delay androgen-independent progression and enhance chemosensitivity in prostate cancer using antisense bcl-2 oligodeoxynucleotides. Gleave ME; Miayake H; Goldie J; Nelson C; Tolcher A Urology; 1999 Dec; 54(6A Suppl):36-46. PubMed ID: 10606283 [TBL] [Abstract][Full Text] [Related]
11. Castration induces autoantibody and T cell responses that correlate with inferior outcomes in an androgen-dependent murine tumor model. Hahn S; Nesslinger NJ; Drapala RJ; Bowden M; Rennie PS; Pai HH; Ludgate C; Nelson BH Int J Cancer; 2009 Dec; 125(12):2871-8. PubMed ID: 19554630 [TBL] [Abstract][Full Text] [Related]
12. Intermittent androgen suppression delays progression to androgen-independent regulation of prostate-specific antigen gene in the LNCaP prostate tumour model. Sato N; Gleave ME; Bruchovsky N; Rennie PS; Goldenberg SL; Lange PH; Sullivan LD J Steroid Biochem Mol Biol; 1996 May; 58(2):139-46. PubMed ID: 8809195 [TBL] [Abstract][Full Text] [Related]
13. Use of antisense oligonucleotides targeting the antiapoptotic gene, clusterin/testosterone-repressed prostate message 2, to enhance androgen sensitivity and chemosensitivity in prostate cancer. Gleave ME; Miyake H; Zellweger T; Chi K; July L; Nelson C; Rennie P Urology; 2001 Aug; 58(2 Suppl 1):39-49. PubMed ID: 11502446 [TBL] [Abstract][Full Text] [Related]
14. Hypoxia selects for androgen independent LNCaP cells with a more malignant geno- and phenotype. Butterworth KT; McCarthy HO; Devlin A; Ming L; Robson T; McKeown SR; Worthington J Int J Cancer; 2008 Aug; 123(4):760-8. PubMed ID: 18512241 [TBL] [Abstract][Full Text] [Related]
15. Direct relationship between radiobiological hypoxia in tumors and monoclonal antibody detection of EF5 cellular adducts. Lee J; Siemann DW; Koch CJ; Lord EM Int J Cancer; 1996 Jul; 67(3):372-8. PubMed ID: 8707411 [TBL] [Abstract][Full Text] [Related]
16. Effects of intermittent androgen suppression on the stem cell composition and the expression of the TRPM-2 (clusterin) gene in the Shionogi carcinoma. Akakura K; Bruchovsky N; Rennie PS; Coldman AJ; Goldenberg SL; Tenniswood M; Fox K J Steroid Biochem Mol Biol; 1996 Dec; 59(5-6):501-11. PubMed ID: 9010356 [TBL] [Abstract][Full Text] [Related]
17. Development of androgen-stimulated transplants of Nb rat carcinoma of the dorsal prostate and their response to sex hormones and tamoxifen. Noble RL Cancer Res; 1980 Oct; 40(10):3551-4. PubMed ID: 7438042 [TBL] [Abstract][Full Text] [Related]
18. Timing is everything: preclinical evidence supporting simultaneous rather than sequential chemohormonal therapy for prostate cancer. Eigl BJ; Eggener SE; Baybik J; Ettinger S; Chi KN; Nelson C; Wang Z; Gleave ME Clin Cancer Res; 2005 Jul; 11(13):4905-11. PubMed ID: 16000589 [TBL] [Abstract][Full Text] [Related]
19. Supraadditive apoptotic response of R3327-G rat prostate tumors to androgen ablation and radiation. Joon DL; Hasegawa M; Sikes C; Khoo VS; Terry NH; Zagars GK; Meistrich ML; Pollack A Int J Radiat Oncol Biol Phys; 1997 Jul; 38(5):1071-7. PubMed ID: 9276374 [TBL] [Abstract][Full Text] [Related]
20. In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Nickerson T; Chang F; Lorimer D; Smeekens SP; Sawyers CL; Pollak M Cancer Res; 2001 Aug; 61(16):6276-80. PubMed ID: 11507082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]