These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15624316)

  • 21. Karyotypes of human lymphocytes exposed to high-energy iron ions.
    Durante M; George K; Wu H; Cucinotta FA
    Radiat Res; 2002 Nov; 158(5):581-90. PubMed ID: 12385635
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous obtention of an intense G-banding and chromosome painting.
    Richard F; Dutrillaux B
    Cytogenet Cell Genet; 1996; 74(1-2):124-6. PubMed ID: 8893818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cot-1 banding of human chromosomes using fluorescence in situ hybridization with Cy3 labeling.
    Wang Y; Minoshima S; Shimizu N
    Jpn J Hum Genet; 1995 Sep; 40(3):243-52. PubMed ID: 8527798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparative study on potential cytogenetic fingerprints for radiation LET in human lymphocytes.
    Deng W; Morrison DP; Gale KL; Lucas JN
    Int J Radiat Biol; 2000 Dec; 76(12):1589-98. PubMed ID: 11133040
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of Spatial Organization of Chromosome Territories in Chromosome Exchange Aberrations After Ionizing Radiation Exposure.
    Balajee AS; Sanders JT; Golloshi R; Shuryak I; McCord RP; Dainiak N
    Health Phys; 2018 Jul; 115(1):77-89. PubMed ID: 29787433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. X-irradiated human lymphocytes with unstable aberrations and their preferential elimination by p53/survivin-dependent apoptosis.
    Bassi L; Carloni M; Meschini R; Fonti E; Palitti F
    Int J Radiat Biol; 2003 Dec; 79(12):943-54. PubMed ID: 14713572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dose rate effect on micronuclei induction in cytokinesis blocked human peripheral blood lymphocytes.
    Bhat NN; Rao BS
    Radiat Prot Dosimetry; 2003; 106(1):45-52. PubMed ID: 14653325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Space radiation does not induce a significant increase of intrachromosomal exchanges in astronauts' lymphocytes.
    Horstmann M; Durante M; Johannes C; Pieper R; Obe G
    Radiat Environ Biophys; 2005 Dec; 44(3):219-24. PubMed ID: 16217644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Persistence of chromosome aberrations in mice acutely exposed to 56Fe+26 ions.
    Tucker JD; Marples B; Ramsey MJ; Lutze-Mann LH
    Radiat Res; 2004 Jun; 161(6):648-55. PubMed ID: 15161355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comment on "Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability," by Mashevich et al. Bioelectromagnetics 2003;24(2):82-90.
    Chou CK; Swicord M
    Bioelectromagnetics; 2003 Dec; 24(8):582; discussion 583-5. PubMed ID: 14603478
    [No Abstract]   [Full Text] [Related]  

  • 31. LET dependence of yield ratios of radiation-induced intra- and interchromosomal aberrations in human lymphocytes.
    Bauchinger M; Schmid E
    Int J Radiat Biol; 1998 Jul; 74(1):17-25. PubMed ID: 9687971
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing the quality of donor cells: karyotyping methods.
    Bonnet-Garnier A; Veillard AC; Bed'Hom B; Hayes H; Britton-Davidian J
    Methods Mol Biol; 2015; 1222():83-99. PubMed ID: 25287340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiation quality and intra-chromosomal aberrations: Size matters.
    Cornforth MN; Durante M
    Mutat Res Genet Toxicol Environ Mutagen; 2018 Dec; 836(Pt A):28-35. PubMed ID: 30389158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous detection of high-resolution R-banding and fluorescence in situ hybridization signals after fluorouracil-induced cellular synchronization.
    Larramendy ML; Nylund SJ; Armstrong E; Knuutila S
    Hereditas; 1993; 119(1):89-94. PubMed ID: 8244758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromosomal bar codes produced by multicolor fluorescence in situ hybridization with multiple YAC clones and whole chromosome painting probes.
    Lengauer C; Speicher MR; Popp S; Jauch A; Taniwaki M; Nagaraja R; Riethman HC; Donis-Keller H; D'Urso M; Schlessinger D
    Hum Mol Genet; 1993 May; 2(5):505-12. PubMed ID: 8518787
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Introduction to the analysis of the human G-banded karyotype.
    Swansbury J
    Methods Mol Biol; 2003; 220():259-69. PubMed ID: 12744219
    [No Abstract]   [Full Text] [Related]  

  • 37. mBAND and mFISH analysis of chromosomal aberrations and breakpoint distribution in chromosome 1 of AG01522 human fibroblasts that were exposed to radiation of different qualities.
    Berardinelli F; De Vitis M; Nieri D; Cherubini R; De Nadal V; Gerardi S; Tanzarella C; Sgura A; Antoccia A
    Mutat Res Genet Toxicol Environ Mutagen; 2015 Nov; 793():55-63. PubMed ID: 26520373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multicolor banding technique, spectral color banding (SCAN): new development and applications.
    Kakazu N; Abe T
    Cytogenet Genome Res; 2006; 114(3-4):250-6. PubMed ID: 16954662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CABAND: Classification of aberrations in multicolor banded chromosomes.
    Horstmann M; Obe G
    Cytogenet Genome Res; 2003; 103(1-2):24-7. PubMed ID: 15004459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multicolor fluorescence in situ hybridization (FISH) applied to FISH-banding.
    Liehr T; Starke H; Heller A; Kosyakova N; Mrasek K; Gross M; Karst C; Steinhaeuser U; Hunstig F; Fickelscher I; Kuechler A; Trifonov V; Romanenko SA; Weise A
    Cytogenet Genome Res; 2006; 114(3-4):240-4. PubMed ID: 16954660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.