BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 15625080)

  • 1. A comparison of strain and fluid shear stress in stimulating bone cell responses--a computational and experimental study.
    McGarry JG; Klein-Nulend J; Mullender MG; Prendergast PJ
    FASEB J; 2005 Mar; 19(3):482-4. PubMed ID: 15625080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanobiology of bone tissue.
    Klein-Nulend J; Bacabac RG; Mullender MG
    Pathol Biol (Paris); 2005 Dec; 53(10):576-80. PubMed ID: 16364809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A finite element model predicts the mechanotransduction response of tendon cells to cyclic tensile loading.
    Lavagnino M; Arnoczky SP; Kepich E; Caballero O; Haut RC
    Biomech Model Mechanobiol; 2008 Oct; 7(5):405-16. PubMed ID: 17901992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress.
    Adachi T; Kameo Y; Hojo M
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2669-82. PubMed ID: 20439268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel mechanical bioreactor for concomitant fluid shear stress and substrate strain.
    Van Dyke WS; Sun X; Richard AB; Nauman EA; Akkus O
    J Biomech; 2012 Apr; 45(7):1323-7. PubMed ID: 22356846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of local strain on cell membrane at initiation point of calcium signaling response to applied mechanical stimulus in osteoblastic cells.
    Sato K; Adachi T; Ueda D; Hojo M; Tomita Y
    J Biomech; 2007; 40(6):1246-55. PubMed ID: 16887125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide production by bone cells is fluid shear stress rate dependent.
    Bacabac RG; Smit TH; Mullender MG; Dijcks SJ; Van Loon JJ; Klein-Nulend J
    Biochem Biophys Res Commun; 2004 Mar; 315(4):823-9. PubMed ID: 14985086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle.
    Deguchi S; Maeda K; Ohashi T; Sato M
    J Biomech; 2005 Sep; 38(9):1751-9. PubMed ID: 16005465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microgravity and bone cell mechanosensitivity.
    Klein-Nulend J; Bacabac RG; Veldhuijzen JP; Van Loon JJ
    Adv Space Res; 2003; 32(8):1551-9. PubMed ID: 15000126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fatigue microcrack alters fluid velocities in a computational model of interstitial fluid flow in cortical bone.
    Galley SA; Michalek DJ; Donahue SW
    J Biomech; 2006; 39(11):2026-33. PubMed ID: 16115637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue.
    Mullender M; El Haj AJ; Yang Y; van Duin MA; Burger EH; Klein-Nulend J
    Med Biol Eng Comput; 2004 Jan; 42(1):14-21. PubMed ID: 14977218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteoblast responses one hour after load-induced fluid flow in a three-dimensional porous matrix.
    Tanaka SM; Sun HB; Roeder RK; Burr DB; Turner CH; Yokota H
    Calcif Tissue Int; 2005 Apr; 76(4):261-71. PubMed ID: 15812578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise enhances the rapid nitric oxide production by bone cells in response to fluid shear stress.
    Bacabac RG; Van Loon JJ; Smit TH; Klein-Nulend J
    Technol Health Care; 2009; 17(1):57-65. PubMed ID: 19478406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of avian bone response to mechanical loading-Part one: Distribution of bone fluid shear stress induced by bending and axial loading.
    Mi LY; Fritton SP; Basu M; Cowin SC
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):118-31. PubMed ID: 16254728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteocyte calcium signaling response to bone matrix deformation.
    Adachi T; Aonuma Y; Ito S; Tanaka M; Hojo M; Takano-Yamamoto T; Kamioka H
    J Biomech; 2009 Nov; 42(15):2507-12. PubMed ID: 19665124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial and temporal regulation of cancellous bone structure: characterization of a rate equation of trabecular surface remodeling.
    Tsubota K; Adachi T
    Med Eng Phys; 2005 May; 27(4):305-11. PubMed ID: 15823471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone remodelling algorithms incorporating both strain and microdamage stimuli.
    McNamara LM; Prendergast PJ
    J Biomech; 2007; 40(6):1381-91. PubMed ID: 16930610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do calcium fluxes within cortical bone affect osteocyte mechanosensitivity?
    Kaiser J; Lemaire T; Naili S; Sansalone V; Komarova SV
    J Theor Biol; 2012 Jun; 303():75-86. PubMed ID: 22420945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelial cells as mechanical transducers: enzymatic activity and network formation under cyclic strain.
    Shukla A; Dunn AR; Moses MA; Van Vliet KJ
    Mech Chem Biosyst; 2004 Dec; 1(4):279-90. PubMed ID: 16783924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interrelations between elastic energy and strain in a tensegrity model: contribution to the analysis of the mechanical response in living cells.
    Wendling S; CaNadas P; Oddou C; Meunier A
    Comput Methods Biomech Biomed Engin; 2002 Feb; 5(1):1-6. PubMed ID: 12186729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.