BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 15625310)

  • 1. Essential residues, W177 and R198, of LukF for phosphatidylcholine-binding and pore-formation by staphylococcal gamma-hemolysin on human erythrocyte membranes.
    Monma N; Nguyen VT; Kaneko J; Higuchi H; Kamio Y
    J Biochem; 2004 Oct; 136(4):427-31. PubMed ID: 15625310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes.
    Kaneko J; Kamio Y
    Biosci Biotechnol Biochem; 2004 May; 68(5):981-1003. PubMed ID: 15170101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cluster-forming property correlated with hemolytic activity by staphylococcal γ-hemolysin transmembrane pores.
    Tomita N; Abe K; Kamio Y; Ohta M
    FEBS Lett; 2011 Nov; 585(21):3452-6. PubMed ID: 22001207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermolecular ionic interactions serve as a possible switch for stem release in the staphylococcal bi-component toxin for β-barrel pore assembly.
    Takeda K; Tanaka Y; Abe N; Kaneko J
    Toxicon; 2018 Dec; 155():43-48. PubMed ID: 30312693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-molecule visualization of environment-sensitive fluorophores inserted into cell membranes by staphylococcal gamma-hemolysin.
    Nguyen AH; Nguyen VT; Kamio Y; Higuchi H
    Biochemistry; 2006 Feb; 45(8):2570-6. PubMed ID: 16489750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling pore assembly of staphylococcal gamma-haemolysin by low temperature and by disulphide bond formation in double-cysteine LukF mutants.
    Nguyen VT; Higuchi H; Kamio Y
    Mol Microbiol; 2002 Sep; 45(6):1485-98. PubMed ID: 12354220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Further study on the two pivotal parts of Hlg2 for the full hemolytic activity of staphylococcal gamma-hemolysin.
    Yokota K; Sugawara N; Nariya H; Kaneko J; Tomita T; Kamio Y
    Biosci Biotechnol Biochem; 1998 Sep; 62(9):1745-50. PubMed ID: 9805375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homologous versus heterologous interactions in the bicomponent staphylococcal gamma-haemolysin pore.
    Viero G; Cunaccia R; Prévost G; Werner S; Monteil H; Keller D; Joubert O; Menestrina G; Dalla Serra M
    Biochem J; 2006 Feb; 394(Pt 1):217-25. PubMed ID: 16241903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-molecule imaging of cooperative assembly of gamma-hemolysin on erythrocyte membranes.
    Nguyen VT; Kamio Y; Higuchi H
    EMBO J; 2003 Oct; 22(19):4968-79. PubMed ID: 14517236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the specificity of Panton-Valentine leucocidin and gamma-hemolysin F component binding.
    Meyer F; Girardot R; Piémont Y; Prévost G; Colin DA
    Infect Immun; 2009 Jan; 77(1):266-73. PubMed ID: 18838523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic assembly of two-component staphylococcal gamma-hemolysin into heteroheptameric transmembrane pores with alternate subunit arrangements in ratios of 3:4 and 4:3.
    Sugawara-Tomita N; Tomita T; Kamio Y
    J Bacteriol; 2002 Sep; 184(17):4747-56. PubMed ID: 12169599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered covalent leucotoxin heterodimers form functional pores: insights into S-F interactions.
    Joubert O; Viero G; Keller D; Martinez E; Colin DA; Monteil H; Mourey L; Dalla Serra M; Prévost G
    Biochem J; 2006 Jun; 396(2):381-9. PubMed ID: 16494579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine72 residue at the bottom of rim domain in LukF crucial for the sequential binding of the staphylococcal gamma-hemolysin to human erythrocytes.
    Yokota K; Kamio Y
    Biosci Biotechnol Biochem; 2000 Dec; 64(12):2744-7. PubMed ID: 11210152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the essential regions for LukS- and H gamma II-specific functions of staphylococcal leukocidin and gamma-hemolysin.
    Nariya H; Kamio Y
    Biosci Biotechnol Biochem; 1995 Aug; 59(8):1603-4. PubMed ID: 7549113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components.
    Yamashita K; Kawai Y; Tanaka Y; Hirano N; Kaneko J; Tomita N; Ohta M; Kamio Y; Yao M; Tanaka I
    Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17314-9. PubMed ID: 21969538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tryptophan spectroscopy studies and black lipid bilayer analysis indicate that the oligomeric structure of Cry1Ab toxin from Bacillus thuringiensis is the membrane-insertion intermediate.
    Rausell C; Muñoz-Garay C; Miranda-CassoLuengo R; Gómez I; Rudiño-Piñera E; Soberón M; Bravo A
    Biochemistry; 2004 Jan; 43(1):166-74. PubMed ID: 14705942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An N-terminal region of LukF of staphylococcal leukocidin/gamma-hemolysin crucial for the biological activity of the toxin.
    Kaneko J; Mascarenas AL; Huda MN; Tomita T; Kamio Y
    Biosci Biotechnol Biochem; 1998 Jul; 62(7):1465-7. PubMed ID: 9720234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Essential binding of LukF of staphylococcal gamma-hemolysin followed by the binding of H gamma II for the hemolysis of human erythrocytes.
    Ozawa T; Kaneko J; Kamio Y
    Biosci Biotechnol Biochem; 1995 Jun; 59(6):1181-3. PubMed ID: 7613012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins.
    Yamashita D; Sugawara T; Takeshita M; Kaneko J; Kamio Y; Tanaka I; Tanaka Y; Yao M
    Nat Commun; 2014 Sep; 5():4897. PubMed ID: 25263813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rim domain loops of staphylococcal β-pore forming bi-component toxin S-components recognize target human erythrocytes in a coordinated manner.
    Peng Z; Takeshita M; Shibata N; Tada H; Tanaka Y; Kaneko J
    J Biochem; 2018 Aug; 164(2):93-102. PubMed ID: 29474554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.