BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1562603)

  • 1. High-resolution analysis of c-fos chromatin accessibility using a novel DNase I-PCR assay.
    Feng J; Villeponteau B
    Biochim Biophys Acta; 1992 Apr; 1130(3):253-8. PubMed ID: 1562603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The polyomavirus enhancer activates chromatin accessibility on integration into the HPRT gene.
    Pikaart M; Feng J; Villeponteau B
    Mol Cell Biol; 1992 Dec; 12(12):5785-92. PubMed ID: 1333045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serum stimulation of the c-fos enhancer induces reversible changes in c-fos chromatin structure.
    Feng JL; Villeponteau B
    Mol Cell Biol; 1990 Mar; 10(3):1126-33. PubMed ID: 2106068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring Arabidopsis chromatin accessibility using DNase I-polymerase chain reaction and DNase I-chip assays.
    Shu H; Gruissem W; Hennig L
    Plant Physiol; 2013 Aug; 162(4):1794-801. PubMed ID: 23739687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State of chromatin sensitivity to DNase I in the rat Ig-beta/growth hormone locus determined by real-time PCR.
    Osano K; Otsuka A; Ono M
    Biol Pharm Bull; 2004 Feb; 27(2):222-5. PubMed ID: 14758038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a Myb-responsive enhancer of the chicken C/EBPbeta gene.
    Kintscher J; Yamkamon V; Braas D; Klempnauer KH
    Oncogene; 2004 Jul; 23(34):5807-14. PubMed ID: 15195136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin remodeling of the interleukin-2 gene: distinct alterations in the proximal versus distal enhancer regions.
    Ward SB; Hernandez-Hoyos G; Chen F; Waterman M; Reeves R; Rothenberg EV
    Nucleic Acids Res; 1998 Jun; 26(12):2923-34. PubMed ID: 9611237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNase I-hypersensitive sites in the chromatin of rat growth hormone gene locus and enhancer activity of regions with these sites.
    Aizawa A; Yoneyama T; Kazahari K; Ono M
    Nucleic Acids Res; 1995 Jun; 23(12):2236-44. PubMed ID: 7610053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNase-seq to Study Chromatin Accessibility in Early
    Cho JS; Blitz IL; Cho KWY
    Cold Spring Harb Protoc; 2019 Apr; 2019(4):pdb.prot098335. PubMed ID: 30131367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking chromatin states using controlled DNase I treatment and real-time PCR.
    Martins RP; Platts AE; Krawetz SA
    Cell Mol Biol Lett; 2007; 12(4):545-55. PubMed ID: 17588221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A phosphatase inhibitor enhances the DNase I sensitivity of active chromatin.
    Feng JL; Irving J; Villeponteau B
    Biochemistry; 1991 May; 30(19):4747-52. PubMed ID: 1851437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin accessibility data sets show bias due to sequence specificity of the DNase I enzyme.
    Koohy H; Down TA; Hubbard TJ
    PLoS One; 2013; 8(7):e69853. PubMed ID: 23922824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mouse albumin promoter and a distal upstream site are simultaneously DNase I hypersensitive in liver chromatin and bind similar liver-abundant factors in vitro.
    Liu JK; Bergman Y; Zaret KS
    Genes Dev; 1988 May; 2(5):528-41. PubMed ID: 3384331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The immunoglobulin mu enhancer core establishes local factor access in nuclear chromatin independent of transcriptional stimulation.
    Jenuwein T; Forrester WC; Qiu RG; Grosschedl R
    Genes Dev; 1993 Oct; 7(10):2016-32. PubMed ID: 8406005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-scale mapping of DNase I hypersensitivity.
    John S; Sabo PJ; Canfield TK; Lee K; Vong S; Weaver M; Wang H; Vierstra J; Reynolds AP; Thurman RE; Stamatoyannopoulos JA
    Curr Protoc Mol Biol; 2013 Jul; Chapter 27():Unit 21.27. PubMed ID: 23821440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin structure and gene regulation: a dynamic view of enhancer function.
    Stavreva DA; Hager GL
    Nucleus; 2015; 6(6):442-8. PubMed ID: 26765055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human immunoglobulin kappa gene enhancer: chromatin structure analysis at high resolution.
    Gimble JM; Max EE
    Mol Cell Biol; 1987 Jan; 7(1):15-25. PubMed ID: 3031454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide discovery of active regulatory elements and transcription factor footprints in
    Ho MCW; Quintero-Cadena P; Sternberg PW
    Genome Res; 2017 Dec; 27(12):2108-2119. PubMed ID: 29074739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping and characterization of DNase I hypersensitive sites in Arabidopsis chromatin.
    Kodama Y; Nagaya S; Shinmyo A; Kato K
    Plant Cell Physiol; 2007 Mar; 48(3):459-70. PubMed ID: 17283013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context.
    Tanaka S; Livingstone-Zatchej M; Thoma F
    J Mol Biol; 1996 Apr; 257(5):919-34. PubMed ID: 8632475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.