BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1562603)

  • 21. Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays.
    Sabo PJ; Kuehn MS; Thurman R; Johnson BE; Johnson EM; Cao H; Yu M; Rosenzweig E; Goldy J; Haydock A; Weaver M; Shafer A; Lee K; Neri F; Humbert R; Singer MA; Richmond TA; Dorschner MO; McArthur M; Hawrylycz M; Green RD; Navas PA; Noble WS; Stamatoyannopoulos JA
    Nat Methods; 2006 Jul; 3(7):511-8. PubMed ID: 16791208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An inducible enhancer required for Il12b promoter activity in an insulated chromatin environment.
    Zhou L; Nazarian AA; Xu J; Tantin D; Corcoran LM; Smale ST
    Mol Cell Biol; 2007 Apr; 27(7):2698-712. PubMed ID: 17242186
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of two enhancer elements downstream of the human c-myc gene.
    Mautner J; Joos S; Werner T; Eick D; Bornkamm GW; Polack A
    Nucleic Acids Res; 1995 Jan; 23(1):72-80. PubMed ID: 7870592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-resolution mapping of S1- and DNase I-hypersensitive sites in chromatin.
    Weintraub H
    Mol Cell Biol; 1985 Jun; 5(6):1538-9. PubMed ID: 2993871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The polyoma virus enhancer cannot substitute for DNase I core hypersensitive sites 2-4 in the human beta-globin LCR.
    Tanimoto K; Liu Q; Bungert J; Engel JD
    Nucleic Acids Res; 1999 Aug; 27(15):3130-7. PubMed ID: 10454609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Matrix attachment region-dependent function of the immunoglobulin mu enhancer involves histone acetylation at a distance without changes in enhancer occupancy.
    Fernández LA; Winkler M; Grosschedl R
    Mol Cell Biol; 2001 Jan; 21(1):196-208. PubMed ID: 11113195
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Global survey of chromatin accessibility using DNA microarrays.
    Weil MR; Widlak P; Minna JD; Garner HR
    Genome Res; 2004 Jul; 14(7):1374-81. PubMed ID: 15231753
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Murine erythroleukemia cell differentiation: DNase I hypersensitivity and DNA methylation near the globin genes.
    Sheffery M; Rifkind RA; Marks PA
    Proc Natl Acad Sci U S A; 1982 Feb; 79(4):1180-4. PubMed ID: 6280172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide mapping of DNase I hypersensitive sites in plants.
    Zhang W; Jiang J
    Methods Mol Biol; 2015; 1284():71-89. PubMed ID: 25757768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of chromatin in limited numbers of cells: a PCR-SSCP based assay of allele-specific nuclease sensitivity.
    Gregory RI; Feil R
    Nucleic Acids Res; 1999 Nov; 27(22):e32. PubMed ID: 10536165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring the relationship between intron retention and chromatin accessibility in plants.
    Ullah F; Hamilton M; Reddy ASN; Ben-Hur A
    BMC Genomics; 2018 Jan; 19(1):21. PubMed ID: 29304739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNase I digestion of isolated nulcei for genome-wide mapping of DNase hypersensitivity sites in chromatin.
    Ling G; Waxman DJ
    Methods Mol Biol; 2013; 977():21-33. PubMed ID: 23436351
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overall changes in chromatin sensitivity to DNase I during differentiation.
    Szabó G; Damjanovich S; Sümegi J; Klein G
    Exp Cell Res; 1987 Mar; 169(1):158-68. PubMed ID: 3469102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromatin differences between active and inactive X chromosomes revealed by genomic footprinting of permeabilized cells using DNase I and ligation-mediated PCR.
    Pfeifer GP; Riggs AD
    Genes Dev; 1991 Jun; 5(6):1102-13. PubMed ID: 2044957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extension product capture improves genomic sequencing and DNase I footprinting by ligation-mediated PCR.
    Törmänen VT; Swiderski PM; Kaplan BE; Pfeifer GP; Riggs AD
    Nucleic Acids Res; 1992 Oct; 20(20):5487-8. PubMed ID: 1437574
    [No Abstract]   [Full Text] [Related]  

  • 36. Mapping nucleosome positions using DNase-seq.
    Zhong J; Luo K; Winter PS; Crawford GE; Iversen ES; Hartemink AJ
    Genome Res; 2016 Mar; 26(3):351-64. PubMed ID: 26772197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional dissection of the mouse tyrosinase locus control region identifies a new putative boundary activity.
    Giraldo P; Martínez A; Regales L; Lavado A; García-Díaz A; Alonso A; Busturia A; Montoliu L
    Nucleic Acids Res; 2003 Nov; 31(21):6290-305. PubMed ID: 14576318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of manganese in RT-PCR eliminates PCR artifacts resulting from DNase I digestion.
    Bauer P; Rolfs A; Regitz-Zagrosek V; Hildebrandt A; Fleck E
    Biotechniques; 1997 Jun; 22(6):1128-32. PubMed ID: 9187763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reconstitution of human beta-globin locus control region hypersensitive sites in the absence of chromatin assembly.
    Leach KM; Nightingale K; Igarashi K; Levings PP; Engel JD; Becker PB; Bungert J
    Mol Cell Biol; 2001 Apr; 21(8):2629-40. PubMed ID: 11283243
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Open chromatin in plant genomes.
    Zhang W; Zhang T; Wu Y; Jiang J
    Cytogenet Genome Res; 2014; 143(1-3):18-27. PubMed ID: 24923879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.