These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15626426)

  • 1. A potentiostatic study of oxygen transport through poly(2-ethoxyethyl methacrylate-co-2,3-dihydroxypropylmethacrylate) hydrogel membranes.
    Compañ V; Tiemblo P; García F; García JM; Guzmán J; Riande E
    Biomaterials; 2005 Jun; 26(18):3783-91. PubMed ID: 15626426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A potentiostatic study of oxygen transmissibility and permeability through hydrogel membranes.
    Compañ V; Guzmán J; Riande E
    Biomaterials; 1998 Dec; 19(23):2139-45. PubMed ID: 9884054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological and topographic effects on calcification tendency of pHEMA hydrogels.
    Lou X; Vijayasekaran S; Sugiharti R; Robertson T
    Biomaterials; 2005 Oct; 26(29):5808-17. PubMed ID: 15949546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state diffusion of water through soft-contact-lens materials.
    Fornasiero F; Krull F; Prausnitz JM; Radke CJ
    Biomaterials; 2005 Oct; 26(28):5704-16. PubMed ID: 15878376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the water matric potential (psi(M)) and of equilibrium water content (EWC) on the water self-diffusion coefficient and on the oxygen permeability in hydrogel contact lenses.
    Beruto DT; Botter R
    Biomaterials; 2004 Jun; 25(14):2877-83. PubMed ID: 14962566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen transport through methacrylate-based hydrogels with potential biological capability.
    Compañ V; San Román J; Riande E; Sørensen TS; Levenfeld B; Andrio A
    Biomaterials; 1996 Jun; 17(12):1243-9. PubMed ID: 8799509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and characterization of ophthalmically compatible hydrogels composed of poly(dimethyl siloxane-urethane)/Pluronic F127.
    Lin CH; Lin WC; Yang MC
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):36-44. PubMed ID: 19188049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel hydrogel membrane based on copoly(hydroxyethyl methacrylate/p-vinylbenzyl-poly(ethylene oxide)) for biomedical applications: properties and drug release characteristics.
    Arica MY; Bayramoglu G; Arica B; Yalçin E; Ito K; Yagci Y
    Macromol Biosci; 2005 Oct; 5(10):983-92. PubMed ID: 16208632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization and release of the redox mediator ferrocene monocarboxylic acid from within cross-linked p(HEMA-co-PEGMA-co-HMMA) hydrogels.
    Boztas AO; Guiseppi-Elie A
    Biomacromolecules; 2009 Aug; 10(8):2135-43. PubMed ID: 19601642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of poly(sorbitan methacrylate) hydrogel by free-radical polymerization.
    Jeong GT; Lee KM; Yang HS; Park SH; Park JH; Sunwoo C; Ryu HW; Kim D; Lee WT; Kim HS; Cha WS; Park DH
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):935-46. PubMed ID: 18478446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled release of drugs from multi-component biomaterials.
    Zalfen AM; Nizet D; Jérôme C; Jérôme R; Frankenne F; Foidart JM; Maquet V; Lecomte F; Hubert P; Evrard B
    Acta Biomater; 2008 Nov; 4(6):1788-96. PubMed ID: 18583206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneously forming hydrogel from water-soluble random- and block-type phospholipid polymers.
    Kimura M; Fukumoto K; Watanabe J; Takai M; Ishihara K
    Biomaterials; 2005 Dec; 26(34):6853-62. PubMed ID: 15978662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels.
    Kimura M; Takai M; Ishihara K
    J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of cyclic acetal based degradable hydrogels.
    Kaihara S; Matsumura S; Fisher JP
    Eur J Pharm Biopharm; 2008 Jan; 68(1):67-73. PubMed ID: 17888640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for the topographical patterning and patterned surface modification of hydrogels based on hydroxyethyl methacrylate.
    Yu T; Ober CK
    Biomacromolecules; 2003; 4(5):1126-31. PubMed ID: 12959574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New perfluoroalkylated amphiphilic methacrylates bearing sulfinyl group as monomers for biomedical applications: water content and oxygen permeability of their copolymers with DEGMA.
    Církva V; Duchek J; Kaplánek R; Paleta O; Michálek J; Prádný M; Chmelíková D; Wichterlová J
    Eur J Med Chem; 2006 Nov; 41(11):1320-6. PubMed ID: 16889874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR imaging of the diffusion of water at 310 K into semi-IPNs of PEM and poly(HEMA-co-THFMA) with and without chlorhexidine diacetate.
    Chowdhury MA; Hill DJ; Whittaker AK; Braden M; Patel MP
    Biomacromolecules; 2004; 5(4):1405-11. PubMed ID: 15244458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalizable and nonfouling zwitterionic carboxybetaine hydrogels with a carboxybetaine dimethacrylate crosslinker.
    Carr LR; Xue H; Jiang S
    Biomaterials; 2011 Feb; 32(4):961-8. PubMed ID: 20970184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Release of antimicrobial and antiviral drugs from methacrylate copolymer system: effect of copolymer molecular weight and drug loading on drug release.
    Tallury P; Airrabeelli R; Li J; Paquette D; Kalachandra S
    Dent Mater; 2008 Feb; 24(2):274-80. PubMed ID: 17628658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zwitterionic hydrogels: an in vivo implantation study.
    Zhang Z; Chao T; Liu L; Cheng G; Ratner BD; Jiang S
    J Biomater Sci Polym Ed; 2009; 20(13):1845-59. PubMed ID: 19793443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.