These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 15626437)

  • 1. Tissue reactions of in situ formed dextran hydrogels crosslinked by stereocomplex formation after subcutaneous implantation in rats.
    Bos GW; Hennink WE; Brouwer LA; den Otter W; Veldhuis TF; van Nostrum CF; van Luyn MJ
    Biomaterials; 2005 Jun; 26(18):3901-9. PubMed ID: 15626437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocatalytic synthesis of highly ordered degradable dextran-based hydrogels.
    Ferreira L; Gil MH; Cabrita AM; Dordick JS
    Biomaterials; 2005 Aug; 26(23):4707-16. PubMed ID: 15763250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins.
    Hennink WE; De Jong SJ; Bos GW; Veldhuis TF; van Nostrum CF
    Int J Pharm; 2004 Jun; 277(1-2):99-104. PubMed ID: 15158973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior.
    de Jong SJ; van Eerdenbrugh B; van Nostrum CF; Kettenes-van den Bosch JJ; Hennink WE
    J Control Release; 2001 Apr; 71(3):261-75. PubMed ID: 11295219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ crosslinked biodegradable hydrogels loaded with IL-2 are effective tools for local IL-2 therapy.
    Bos GW; Jacobs JJ; Koten JW; Van Tomme S; Veldhuis T; van Nostrum CF; Den Otter W; Hennink WE
    Eur J Pharm Sci; 2004 Mar; 21(4):561-7. PubMed ID: 14998588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable hydrogels based on stereocomplex formation between lactic acid oligomers grafted to dextran.
    de Jong SJ; De Smedt SC; Demeester J; van Nostrum CF; Kettenes-van den Bosch JJ; Hennink WE
    J Control Release; 2001 May; 72(1-3):47-56. PubMed ID: 11389984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and biocompatibility of organogels based on L-alanine for parenteral drug delivery implants.
    Motulsky A; Lafleur M; Couffin-Hoarau AC; Hoarau D; Boury F; Benoit JP; Leroux JC
    Biomaterials; 2005 Nov; 26(31):6242-53. PubMed ID: 15916802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue response to partially in vitro predegraded poly-L-lactide implants.
    De Jong WH; Eelco Bergsma J; Robinson JE; Bos RR
    Biomaterials; 2005 May; 26(14):1781-91. PubMed ID: 15576152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility of chemoenzymatically derived dextran-acrylate hydrogels.
    Ferreira L; Rafael A; Lamghari M; Barbosa MA; Gil MH; Cabrita AM; Dordick JS
    J Biomed Mater Res A; 2004 Mar; 68(3):584-96. PubMed ID: 14762939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo biocompatibility of dextran-based hydrogels.
    Cadée JA; van Luyn MJ; Brouwer LA; Plantinga JA; van Wachem PB; de Groot CJ; den Otter W; Hennink WE
    J Biomed Mater Res; 2000 Jun; 50(3):397-404. PubMed ID: 10737882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility evaluation of crosslinked chitosan hydrogels after subcutaneous and intraperitoneal implantation in the rat.
    Azab AK; Doviner V; Orkin B; Kleinstern J; Srebnik M; Nissan A; Rubinstein A
    J Biomed Mater Res A; 2007 Nov; 83(2):414-22. PubMed ID: 17455216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility and stability of disulfide-crosslinked hyaluronan films.
    Liu Y; Zheng Shu X; Prestwich GD
    Biomaterials; 2005 Aug; 26(23):4737-46. PubMed ID: 15763253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Injectable hyaluronic acid-dextran hydrogels and effects of implantation in ferret vocal fold.
    Luo Y; Kobler JB; Heaton JT; Jia X; Zeitels SM; Langer R
    J Biomed Mater Res B Appl Biomater; 2010 May; 93(2):386-93. PubMed ID: 20151459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds.
    Baier Leach J; Bivens KA; Patrick CW; Schmidt CE
    Biotechnol Bioeng; 2003 Jun; 82(5):578-89. PubMed ID: 12652481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-gelling hydrogels based on oppositely charged dextran microspheres.
    Van Tomme SR; van Steenbergen MJ; De Smedt SC; van Nostrum CF; Hennink WE
    Biomaterials; 2005 May; 26(14):2129-35. PubMed ID: 15576188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue response in the rat and the mouse to degradable dextran hydrogels.
    De Jong WH; Dormans JA; Van Steenbergen MJ; Verharen HW; Hennink WE
    J Biomed Mater Res A; 2007 Nov; 83(2):538-45. PubMed ID: 17530632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macroscopic hydrogels by self-assembly of oligolactate-grafted dextran microspheres.
    Van Tomme SR; Mens A; van Nostrum CF; Hennink WE
    Biomacromolecules; 2008 Jan; 9(1):158-65. PubMed ID: 18081253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of hyaluronic acid oligomer content on physical, mechanical, and biologic properties of divinyl sulfone-crosslinked hyaluronic acid hydrogels.
    Ibrahim S; Kang QK; Ramamurthi A
    J Biomed Mater Res A; 2010 Aug; 94(2):355-70. PubMed ID: 20186732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of additives on gelation and tissue adhesion of gelatin-poly(L-glutamic acid) mixture.
    Otani Y; Tabata Y; Ikada Y
    Biomaterials; 1998 Dec; 19(23):2167-73. PubMed ID: 9884057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro release of insulin and biocompatibility of in situ forming gel systems.
    Kang F; Singh J
    Int J Pharm; 2005 Nov; 304(1-2):83-90. PubMed ID: 16181752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.