These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 15626437)

  • 21. Tissue reaction and biodegradation of implanted cross-linked high amylose starch in rats.
    Désévaux C; Dubreuil P; Lenaerts V; Girard C
    J Biomed Mater Res; 2002; 63(6):772-9. PubMed ID: 12418023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Foreign body response to subcutaneous biomaterial implants in a mast cell-deficient Kit(w-Sh) murine model.
    Avula MN; Rao AN; McGill LD; Grainger DW; Solzbacher F
    Acta Biomater; 2014 May; 10(5):1856-63. PubMed ID: 24406200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives.
    Ito T; Yeo Y; Highley CB; Bellas E; Benitez CA; Kohane DS
    Biomaterials; 2007 Feb; 28(6):975-83. PubMed ID: 17109954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation behavior of dextran hydrogels composed of positively and negatively charged microspheres.
    Van Tomme SR; van Nostrum CF; de Smedt SC; Hennink WE
    Biomaterials; 2006 Aug; 27(22):4141-8. PubMed ID: 16600367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adverse reactions to injectable soft tissue permanent fillers.
    Christensen L; Breiting V; Janssen M; Vuust J; Hogdall E
    Aesthetic Plast Surg; 2005; 29(1):34-48. PubMed ID: 15759096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional groups affect physical and biological properties of dextran-based hydrogels.
    Sun G; Shen YI; Ho CC; Kusuma S; Gerecht S
    J Biomed Mater Res A; 2010 Jun; 93(3):1080-90. PubMed ID: 19753626
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dextran and hyaluronan methacrylate based hydrogels as matrices for soft tissue reconstruction.
    Möller S; Weisser J; Bischoff S; Schnabelrauch M
    Biomol Eng; 2007 Nov; 24(5):496-504. PubMed ID: 17884723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradable dextran hydrogels for protein delivery applications.
    Van Tomme SR; Hennink WE
    Expert Rev Med Devices; 2007 Mar; 4(2):147-64. PubMed ID: 17359222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biocompatibility of poly(D,L-lactic-co-hydroxymethyl glycolic acid) microspheres after subcutaneous and subcapsular renal injection.
    Kazazi-Hyseni F; Zandstra J; Popa ER; Goldschmeding R; Lathuile AA; Veldhuis GJ; Van Nostrum CF; Hennink WE; Kok RJ
    Int J Pharm; 2015 Mar; 482(1-2):99-109. PubMed ID: 25497444
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of polyphosphazene hydrogels with improved structural properties by use of star-shaped multithiol crosslinkers.
    Potta T; Chun C; Song SC
    Macromol Biosci; 2011 May; 11(5):689-99. PubMed ID: 21448917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Feasibility of poly (ϵ-caprolactone-co-DL-lactide) as a biodegradable material for in situ forming implants: evaluation of drug release and in vivo degradation.
    Zhang X; Zhang C; Zhang W; Meng S; Liu D; Wang P; Guo J; Li J; Guan Y; Yang D
    Drug Dev Ind Pharm; 2015 Feb; 41(2):342-52. PubMed ID: 24320881
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spontaneous Formation of a Hydrogel Composed of Water-Soluble Phospholipid Polymers Grafted with Enantiomeric Oligo(lactic acid) Chains.
    Takami K; Watanabe J; Takai M; Ishihara K
    J Biomater Sci Polym Ed; 2011; 22(1-3):77-89. PubMed ID: 20546676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds.
    Balakrishnan B; Jayakrishnan A
    Biomaterials; 2005 Jun; 26(18):3941-51. PubMed ID: 15626441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of polysaccharide composition on the biocompatibility of pullulan/dextran-based hydrogels.
    Abed A; Assoul N; Ba M; Derkaoui SM; Portes P; Louedec L; Flaud P; Bataille I; Letourneur D; Meddahi-Pellé A
    J Biomed Mater Res A; 2011 Mar; 96(3):535-42. PubMed ID: 21254385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photocrosslinking of dextran and polyaspartamide derivatives: a combination suitable for colon-specific drug delivery.
    Pitarresi G; Casadei MA; Mandracchia D; Paolicelli P; Palumbo FS; Giammona G
    J Control Release; 2007 Jun; 119(3):328-38. PubMed ID: 17475357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films.
    Draye JP; Delaey B; Van de Voorde A; Van Den Bulcke A; De Reu B; Schacht E
    Biomaterials; 1998 Sep; 19(18):1677-87. PubMed ID: 9840003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermo-sensitive and biodegradable hydrogels based on stereocomplexed Pluronic multi-block copolymers for controlled protein delivery.
    Chung HJ; Lee Y; Park TG
    J Control Release; 2008 Apr; 127(1):22-30. PubMed ID: 18234389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Radiation processed hydrogel of poly (vinyl alcohol) with biodegradable polysaccharides.
    Chowdhury MN; Alam AK; Dafader NC; Haque ME; Akhtar F; Ahmed MU; Rashid H; Begum R
    Biomed Mater Eng; 2006; 16(3):223-8. PubMed ID: 16518021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.
    Kuo CK; Ma PX
    J Biomed Mater Res A; 2008 Mar; 84(4):899-907. PubMed ID: 17647237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Retention of transforming growth factor beta1 using functionalized dextran-based hydrogels.
    Maire M; Logeart-Avramoglou D; Degat MC; Chaubet F
    Biomaterials; 2005 May; 26(14):1771-80. PubMed ID: 15576151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.