BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

891 related articles for article (PubMed ID: 15626439)

  • 1. Chitosan-alginate hybrid scaffolds for bone tissue engineering.
    Li Z; Ramay HR; Hauch KD; Xiao D; Zhang M
    Biomaterials; 2005 Jun; 26(18):3919-28. PubMed ID: 15626439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition of mechanical property of porous alginate scaffold with cells during culture period.
    Sakai S; Masuhara H; Yamada Y; Ono T; Ijima H; Kawakami K
    J Biosci Bioeng; 2005 Jul; 100(1):127-9. PubMed ID: 16233864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chitosan-alginate as scaffolding material for cartilage tissue engineering.
    Li Z; Zhang M
    J Biomed Mater Res A; 2005 Nov; 75(2):485-93. PubMed ID: 16092113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds.
    Balakrishnan B; Jayakrishnan A
    Biomaterials; 2005 Jun; 26(18):3941-51. PubMed ID: 15626441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells.
    Machado CB; Ventura JM; Lemos AF; Ferreira JM; Leite MF; Goes AM
    Biomed Mater; 2007 Jun; 2(2):124-31. PubMed ID: 18458445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reinforcement of porous alginate scaffolds by incorporating electrospun fibres.
    Sakai S; Takagi Y; Yamada Y; Yamaguchi T; Kawakami K
    Biomed Mater; 2008 Sep; 3(3):034102. PubMed ID: 18689918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution.
    Boontheekul T; Kong HJ; Mooney DJ
    Biomaterials; 2005 May; 26(15):2455-65. PubMed ID: 15585248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of processing parameters on pore structure of 3D porous chitosan-alginate polyelectrolyte complex scaffolds.
    Florczyk SJ; Kim DJ; Wood DL; Zhang M
    J Biomed Mater Res A; 2011 Sep; 98(4):614-20. PubMed ID: 21721118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.
    Akay G; Birch MA; Bokhari MA
    Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro evaluation of alginate encapsulated adipose-tissue stromal cells for use as injectable bone graft substitute.
    Abbah SA; Lu WW; Chan D; Cheung KM; Liu WG; Zhao F; Li ZY; Leong JC; Luk KD
    Biochem Biophys Res Commun; 2006 Aug; 347(1):185-91. PubMed ID: 16815293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Octacalcium phosphate-precipitated alginate scaffold for bone regeneration.
    Fuji T; Anada T; Honda Y; Shiwaku Y; Koike H; Kamakura S; Sasaki K; Suzuki O
    Tissue Eng Part A; 2009 Nov; 15(11):3525-35. PubMed ID: 19456237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of alginate and chitosan fibres.
    Qin Y
    Med Device Technol; 2004; 15(1):34-7. PubMed ID: 14994638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional porous alginate scaffolds provide a conducive environment for generation of well-vascularized embryoid bodies from human embryonic stem cells.
    Gerecht-Nir S; Cohen S; Ziskind A; Itskovitz-Eldor J
    Biotechnol Bioeng; 2004 Nov; 88(3):313-20. PubMed ID: 15486935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of polysaccharide hybrid materials for scaffolds in cartilage tissue engineering: evaluation of chondrocyte adhesion to polyion complex fibers prepared from alginate and chitosan.
    Iwasaki N; Yamane ST; Majima T; Kasahara Y; Minami A; Harada K; Nonaka S; Maekawa N; Tamura H; Tokura S; Shiono M; Monde K; Nishimura S
    Biomacromolecules; 2004; 5(3):828-33. PubMed ID: 15132668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration.
    Chesnutt BM; Viano AM; Yuan Y; Yang Y; Guda T; Appleford MR; Ong JL; Haggard WO; Bumgardner JD
    J Biomed Mater Res A; 2009 Feb; 88(2):491-502. PubMed ID: 18306307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering.
    Katti KS; Katti DR; Dash R
    Biomed Mater; 2008 Sep; 3(3):034122. PubMed ID: 18765898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization.
    Han J; Zhou Z; Yin R; Yang D; Nie J
    Int J Biol Macromol; 2010 Mar; 46(2):199-205. PubMed ID: 19941890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alginate-chitosan complex coacervation for cell encapsulation: effect on mechanical properties and on long-term viability.
    Baruch L; Machluf M
    Biopolymers; 2006 Aug; 82(6):570-9. PubMed ID: 16552738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.