These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
491 related articles for article (PubMed ID: 15626440)
1. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Kwon IK; Kidoaki S; Matsuda T Biomaterials; 2005 Jun; 26(18):3929-39. PubMed ID: 15626440 [TBL] [Abstract][Full Text] [Related]
2. Co-electrospun nanofiber fabrics of poly(L-lactide-co-epsilon-caprolactone) with type I collagen or heparin. Kwon IK; Matsuda T Biomacromolecules; 2005; 6(4):2096-105. PubMed ID: 16004450 [TBL] [Abstract][Full Text] [Related]
3. The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility. Lee J; Tae G; Kim YH; Park IS; Kim SH; Kim SH Biomaterials; 2008 Apr; 29(12):1872-9. PubMed ID: 18234330 [TBL] [Abstract][Full Text] [Related]
4. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Pham QP; Sharma U; Mikos AG Biomacromolecules; 2006 Oct; 7(10):2796-805. PubMed ID: 17025355 [TBL] [Abstract][Full Text] [Related]
5. A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. Ito Y; Hasuda H; Kamitakahara M; Ohtsuki C; Tanihara M; Kang IK; Kwon OH J Biosci Bioeng; 2005 Jul; 100(1):43-9. PubMed ID: 16233849 [TBL] [Abstract][Full Text] [Related]
7. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Telemeco TA; Ayres C; Bowlin GL; Wnek GE; Boland ED; Cohen N; Baumgarten CM; Mathews J; Simpson DG Acta Biomater; 2005 Jul; 1(4):377-85. PubMed ID: 16701819 [TBL] [Abstract][Full Text] [Related]
8. Electrospinning of microbial polyester for cell culture. Kwon OH; Lee IS; Ko YG; Meng W; Jung KH; Kang IK; Ito Y Biomed Mater; 2007 Mar; 2(1):S52-8. PubMed ID: 18458420 [TBL] [Abstract][Full Text] [Related]
9. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Patlolla A; Collins G; Arinzeh TL Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769 [TBL] [Abstract][Full Text] [Related]
10. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Xu C; Inai R; Kotaki M; Ramakrishna S Tissue Eng; 2004; 10(7-8):1160-8. PubMed ID: 15363172 [TBL] [Abstract][Full Text] [Related]
11. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration. Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232 [TBL] [Abstract][Full Text] [Related]
12. Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds. Jeong SI; Lee AY; Lee YM; Shin H J Biomater Sci Polym Ed; 2008; 19(3):339-57. PubMed ID: 18325235 [TBL] [Abstract][Full Text] [Related]
13. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds. Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219 [TBL] [Abstract][Full Text] [Related]
14. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Li M; Guo Y; Wei Y; MacDiarmid AG; Lelkes PI Biomaterials; 2006 May; 27(13):2705-15. PubMed ID: 16352335 [TBL] [Abstract][Full Text] [Related]
16. Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold. Kim GH Biomed Mater; 2008 Jun; 3(2):025010. PubMed ID: 18458365 [TBL] [Abstract][Full Text] [Related]
17. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Kidoaki S; Kwon IK; Matsuda T Biomaterials; 2005 Jan; 26(1):37-46. PubMed ID: 15193879 [TBL] [Abstract][Full Text] [Related]
18. Surface modified poly(L-lactide-co-epsilon-caprolactone) microspheres as scaffold for tissue engineering. Garkhal K; Verma S; Tikoo K; Kumar N J Biomed Mater Res A; 2007 Sep; 82(3):747-56. PubMed ID: 17326230 [TBL] [Abstract][Full Text] [Related]
19. Tensile testing of a single ultrafine polymeric fiber. Tan EP; Ng SY; Lim CT Biomaterials; 2005 May; 26(13):1453-6. PubMed ID: 15522746 [TBL] [Abstract][Full Text] [Related]
20. Osteoconductive and degradable electrospun nonwoven poly(epsilon-caprolactone)/CaO-SiO2 gel composite fabric. Seol YJ; Kim KH; Kim IA; Rhee SH J Biomed Mater Res A; 2010 Aug; 94(2):649-59. PubMed ID: 20213814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]