These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 15626985)

  • 1. Fracture patterns of the adolescent porcine spine: an experimental loading study in bending-compression.
    Baranto A; Ekström L; Hellström M; Lundin O; Holm S; Swärd L
    Spine (Phila Pa 1976); 2005 Jan; 30(1):75-82. PubMed ID: 15626985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vertebral fractures and separations of endplates after traumatic loading of adolescent porcine spines with experimentally-induced disc degeneration.
    Baranto A; Ekström L; Holm S; Hellström M; Hansson HA; Swärd L
    Clin Biomech (Bristol, Avon); 2005 Dec; 20(10):1046-54. PubMed ID: 16102879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The immediate effect of repeated loading on the compressive strength of young porcine lumbar spine.
    Thoreson O; Baranto A; Ekström L; Holm S; Hellström M; Swärd L
    Knee Surg Sports Traumatol Arthrosc; 2010 May; 18(5):694-701. PubMed ID: 20012017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injuries in the adolescent porcine spine exposed to mechanical compression.
    Lundin O; Ekström L; Hellström M; Holm S; Swärd L
    Spine (Phila Pa 1976); 1998 Dec; 23(23):2574-9. PubMed ID: 9854756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure of the porcine spine to mechanical compression: differences in injury pattern between adolescents and adults.
    Lundin O; Ekström L; Hellström M; Holm S; Swärd L
    Eur Spine J; 2000 Dec; 9(6):466-71. PubMed ID: 11189914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue failure in shear loading of porcine lumbar spine segments.
    van Dieën JH; van der Veen A; van Royen BJ; Kingma I
    Spine (Phila Pa 1976); 2006 Jul; 31(15):E494-8. PubMed ID: 16816749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoring geometric and loading alignment of the thoracic spine with a vertebral compression fracture: effects of balloon (bone tamp) inflation and spinal extension.
    Gaitanis IN; Carandang G; Phillips FM; Magovern B; Ghanayem AJ; Voronov LI; Havey RM; Zindrick MR; Hadjipavlou AG; Patwardhan AG
    Spine J; 2005; 5(1):45-54. PubMed ID: 15653084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertebroplasty with high-viscosity polymethylmethacrylate cement facilitates vertebral body restoration in vitro.
    Rüger M; Schmoelz W
    Spine (Phila Pa 1976); 2009 Nov; 34(24):2619-25. PubMed ID: 19881400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative strength of thoracic vertebrae in axial compression versus flexion.
    Buckley JM; Kuo CC; Cheng LC; Loo K; Motherway J; Slyfield C; Deviren V; Ames C
    Spine J; 2009 Jun; 9(6):478-85. PubMed ID: 19364678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Traumatic instability of the lumbar spine. A dynamic in vitro study of flexion-distraction injury.
    Neumann P; Nordwall A; Osvalder AL
    Spine (Phila Pa 1976); 1995 May; 20(10):1111-21. PubMed ID: 7638653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical response of the lumbar spine in dynamic compression.
    Duma SM; Kemper AR; McNeely DM; Brolinson PG; Matsuoka F
    Biomed Sci Instrum; 2006; 42():476-81. PubMed ID: 16817654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural space and biomechanical integrity of the developing cervical spine in compression.
    Nuckley DJ; Van Nausdle JA; Eck MP; Ching RP
    Spine (Phila Pa 1976); 2007 Mar; 32(6):E181-7. PubMed ID: 17413458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the torsional stiffness of the lumbar spine in flexion and extension.
    Garges KJ; Nourbakhsh A; Morris R; Yang J; Mody M; Patterson R
    J Manipulative Physiol Ther; 2008 Oct; 31(8):563-9. PubMed ID: 18984238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is kyphoplasty better than vertebroplasty in restoring normal mechanical function to an injured spine?
    Luo J; Bertram W; Sangar D; Adams MA; Annesley-Williams DJ; Dolan P
    Bone; 2010 Apr; 46(4):1050-7. PubMed ID: 20004264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathogenesis of Vertebral Anterior Wedge Deformity: A 2-Stage Process?
    Landham PR; Gilbert SJ; Baker-Rand HL; Pollintine P; Robson Brown KA; Adams MA; Dolan P
    Spine (Phila Pa 1976); 2015 Jun; 40(12):902-8. PubMed ID: 25822544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexion-distraction injuries in the thoracolumbar spine: an in vitro study of the relation between flexion angle and the motion axis of fracture.
    Hoshikawa T; Tanaka Y; Kokubun S; Lu WW; Luk KD; Leong JC
    J Spinal Disord Tech; 2002 Apr; 15(2):139-43. PubMed ID: 11927823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of formation of intravertebral clefts in osteoporotic vertebral compression fractures: An in vitro biomechanical study.
    Chongyan W; Zhang X; Li S; Liu J; Shan Z; Wang J; Chen J; Fan S; Zhao F
    Spine J; 2018 Dec; 18(12):2297-2301. PubMed ID: 30075299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical changes after the augmentation of experimental osteoporotic vertebral compression fractures in the cadaveric thoracic spine.
    Kayanja MM; Togawa D; Lieberman IH
    Spine J; 2005; 5(1):55-63. PubMed ID: 15653085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressive loading of the spine may affect the spinal canal encroachment of burst fractures.
    Boisclair D; Mac-Thiong JM; Parent S; Petit Y
    J Spinal Disord Tech; 2013 Aug; 26(6):342-6. PubMed ID: 22274784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axially loaded magnetic resonance image of the lumbar spine in asymptomatic individuals.
    Danielson B; Willén J
    Spine (Phila Pa 1976); 2001 Dec; 26(23):2601-6. PubMed ID: 11725242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.