BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 15627488)

  • 1. Predicting stability of mixed microbial cultures from single species experiments: 1. Phenomenological model.
    Pilyugin SS; Reeves GT; Narang A
    Math Biosci; 2004 Dec; 192(2):85-109. PubMed ID: 15627488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting stability of mixed microbial cultures from single species experiments: 2. Physiological model.
    Pilyugin SS; Reeves GT; Narang A
    Math Biosci; 2004 Dec; 192(2):111-36. PubMed ID: 15627489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of some models of gene regulation in mixed-substrate microbial growth.
    Narang A
    J Theor Biol; 2006 Sep; 242(2):489-501. PubMed ID: 16650437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The steady states of microbial growth on mixtures of substitutable substrates in a chemostat.
    Narang A
    J Theor Biol; 1998 Feb; 190(3):241-61. PubMed ID: 9514652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial gene regulation in diauxic and non-diauxic growth.
    Narang A; Pilyugin SS
    J Theor Biol; 2007 Jan; 244(2):326-48. PubMed ID: 16989865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel concept combining experimental and mathematical analysis for the identification of unknown interspecies effects in a mixed culture.
    Schmidt JK; Riedele C; Regestein L; Rausenberger J; Reichl U
    Biotechnol Bioeng; 2011 Aug; 108(8):1900-11. PubMed ID: 21391206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene regulation in continuous cultures: a unified theory for bacteria and yeasts.
    Noel JT; Narang A
    Bull Math Biol; 2009 Feb; 71(2):453-514. PubMed ID: 19067083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competition for mixed substrates by microbial populations.
    Yoon H; Klinzing G; Blanch HW
    Biotechnol Bioeng; 1977 Aug; 19(8):1193-210. PubMed ID: 884234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of mixed cultures on mixtures of substitutable substrates: the operating diagram for a structured model.
    Reeves GT; Narang A; Pilyugin SS
    J Theor Biol; 2004 Jan; 226(2):143-57. PubMed ID: 14643184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical description of competition between two and three bacterial species under dual substrate limitation in the chemostat: a comparison with experimental data.
    Gottschal JC; Thingstad TF
    Biotechnol Bioeng; 1982 Jun; 24(6):1403-18. PubMed ID: 18546432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions.
    Zeng AP; Deckwer WD
    Biotechnol Prog; 1995; 11(1):71-9. PubMed ID: 7765990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of growth and substrate consumption of Escherichia coli ML 30 on two carbon sources.
    Hegewald E; Knorre WA
    Z Allg Mikrobiol; 1978; 18(6):415-26. PubMed ID: 362739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing.
    Doona CJ; Feeherry FE; Ross EW
    Int J Food Microbiol; 2005 Apr; 100(1-3):21-32. PubMed ID: 15854689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a three bacteria mixed culture in a chemostat: evaluation and application of a quantitative terminal-restriction fragment length polymorphism (T-RFLP) analysis for absolute and species specific cell enumeration.
    Schmidt JK; König B; Reichl U
    Biotechnol Bioeng; 2007 Mar; 96(4):738-56. PubMed ID: 16937400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structured kinetic model to represent the utilization of multiple substrates in complex media during rifamycin B fermentation.
    Bapat PM; Bhartiya S; Venkatesh KV; Wangikar PP
    Biotechnol Bioeng; 2006 Mar; 93(4):779-90. PubMed ID: 16302259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling microbial adaptation to changing availability of substrates.
    Brandt BW; Kelpin FD; van Leeuwen IM; Kooijman SA
    Water Res; 2004 Feb; 38(4):1003-13. PubMed ID: 14769420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dynamics of single-substrate continuous cultures: the role of ribosomes.
    Gupta S; Pilyugin SS; Narang A
    J Theor Biol; 2005 Feb; 232(4):467-90. PubMed ID: 15588630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell division theory and individual-based modeling of microbial lag: part I. The theory of cell division.
    Dens EJ; Bernaerts K; Standaert AR; Van Impe JF
    Int J Food Microbiol; 2005 Jun; 101(3):303-18. PubMed ID: 15925713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards a novel class of predictive microbial growth models.
    Van Impe JF; Poschet F; Geeraerd AH; Vereecken KM
    Int J Food Microbiol; 2005 Apr; 100(1-3):97-105. PubMed ID: 15854696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate estimation of cardinal growth temperatures of Escherichia coli from optimal dynamic experiments.
    Van Derlinden E; Bernaerts K; Van Impe JF
    Int J Food Microbiol; 2008 Nov; 128(1):89-100. PubMed ID: 18835500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.