BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 15627704)

  • 1. Roles of carbonic anhydrase in photosynthesis of Skeletonema costatum.
    Chen XW; Gao KS
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Oct; 30(5):511-6. PubMed ID: 15627704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity of inorganic carbon acquisition mechanisms by intact microbial mats of Microcoleus chthonoplastes (Cyanobacteriae, Oscillatoriaceae).
    Carrasco M; Mercado JM; Niell FX
    Physiol Plant; 2008 May; 133(1):49-58. PubMed ID: 18405333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in seawater carbonate chemistry.
    Trimborn S; Lundholm N; Thoms S; Richter KU; Krock B; Hansen PJ; Rost B
    Physiol Plant; 2008 May; 133(1):92-105. PubMed ID: 18405335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation of the role of carbonic anhydrase in aquatic and aerial gas transfer in the African lungfish Protopterus dolloi.
    Perry SF; Gilmour KM; Swenson ER; Vulesevic B; Chew SF; Ip YK
    J Exp Biol; 2005 Oct; 208(Pt 19):3805-15. PubMed ID: 16169956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Relation between plasma membrane redox activity and extracellular carbonic anhydrase activity in marine phytoplankton].
    Miao XL; Nimer NA
    Shi Yan Sheng Wu Xue Bao; 2001 Dec; 34(4):313-8. PubMed ID: 12549211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light histories influence the impacts of solar ultraviolet radiation on photosynthesis and growth in a marine diatom, Skeletonema costatum.
    Guan W; Gao K
    J Photochem Photobiol B; 2008 May; 91(2-3):151-6. PubMed ID: 18462948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of hemoglobin affinity for oxygen by carbonic anhydrase.
    Gai X; Taki K; Kato H; Nagaishi H
    J Lab Clin Med; 2003 Dec; 142(6):414-20. PubMed ID: 14713893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison by PAM fluorometry of photosynthetic activity of nine marine phytoplankton grown under identical conditions.
    Juneau P; Harrison PJ
    Photochem Photobiol; 2005; 81(3):649-53. PubMed ID: 15686444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison between fluorimetry and oximetry techniques to measure photosynthesis in the diatom Skeletonema costatum cultivated under simulated seasonal conditions.
    Lefebvre S; Mouget JL; Loret P; Rosa P; Tremblin G
    J Photochem Photobiol B; 2007 Feb; 86(2):131-9. PubMed ID: 17029968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active transport of CO(2) and bicarbonate is induced in response to external CO(2) concentration in the green alga Chlorella kessleri.
    Bozzo GG; Colman B; Matsuda Y
    J Exp Bot; 2000 Aug; 51(349):1341-8. PubMed ID: 10944146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of external carbonic anhydrase in photosynthesis during growth of the marine diatom Chaetoceros muelleri.
    Smith-Harding TJ; Beardall J; Mitchell JG
    J Phycol; 2017 Dec; 53(6):1159-1170. PubMed ID: 28771812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bicarbonate transport and extracellular carbonic anhydrase in marine diatoms.
    Martin CL; Tortell PD
    Physiol Plant; 2008 May; 133(1):106-16. PubMed ID: 18298417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular carbonic anhydrase in the dogfish, Squalus acanthias: a role in CO2 excretion.
    Gilmour KM; Perry SF; Bernier NJ; Henry RP; Wood CM
    Physiol Biochem Zool; 2001; 74(4):477-92. PubMed ID: 11436132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical analysis of carbonic anhydrase function, respiratory gas exchange, and the acid-base control of secretion in the rectal gland of Squalus acanthias.
    Shuttleworth TJ; Thompson J; Munger RS; Wood CM
    J Exp Biol; 2006 Dec; 209(Pt 23):4701-16. PubMed ID: 17114403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The requirement for external carbonic anhydrase in diatoms is influenced by the supply and demand for dissolved inorganic carbon.
    Keys M; Hopkinson B; Highfield A; Chrachri A; Brownlee C; Wheeler GL
    J Phycol; 2024 Feb; 60(1):29-45. PubMed ID: 38127095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological response of a red tide alga (Skeletonema costatum) to nitrate enrichment, with special reference to inorganic carbon acquisition.
    Gao G; Xia J; Yu J; Zeng X
    Mar Environ Res; 2018 Feb; 133():15-23. PubMed ID: 29174425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and photosynthesis limitation of marine red tide alga Skeletonema costatum by low concentrations of Zn2+.
    Hu H; Shi Y; Cong W; Cai Z
    Biotechnol Lett; 2003 Nov; 25(22):1881-5. PubMed ID: 14719821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The gene NCE103 (YNL036w) from Saccharomyces cerevisiae encodes a functional carbonic anhydrase and its transcription is regulated by the concentration of inorganic carbon in the medium.
    Amoroso G; Morell-Avrahov L; Müller D; Klug K; Sültemeyer D
    Mol Microbiol; 2005 Apr; 56(2):549-58. PubMed ID: 15813743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inorganic carbon acquisition in two green marine Stichococcus species.
    Moazami-Goudarzi M; Colman B
    Plant Cell Environ; 2011 Sep; 34(9):1465-72. PubMed ID: 21535017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey.
    McGinn PJ; Morel FM
    Physiol Plant; 2008 May; 133(1):78-91. PubMed ID: 18405334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.