BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 15627720)

  • 1. Angiotensin II-mediated constriction of afferent and efferent arterioles involves T-type Ca2+ channel activation.
    Feng MG; Navar LG
    Am J Nephrol; 2004; 24(6):641-8. PubMed ID: 15627720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide synthase inhibition activates L- and T-type Ca2+ channels in afferent and efferent arterioles.
    Feng MG; Navar LG
    Am J Physiol Renal Physiol; 2006 Apr; 290(4):F873-9. PubMed ID: 16263803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T-type calcium channels in the regulation of afferent and efferent arterioles in rats.
    Feng MG; Li M; Navar LG
    Am J Physiol Renal Physiol; 2004 Feb; 286(2):F331-7. PubMed ID: 14583435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular mechanisms mediating rat renal microvascular constriction by angiotensin II.
    Takenaka T; Suzuki H; Fujiwara K; Kanno Y; Ohno Y; Hayashi K; Nagahama T; Saruta T
    J Clin Invest; 1997 Oct; 100(8):2107-14. PubMed ID: 9329977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of T-type selective calcium antagonist on renal microcirculation: studies in the isolated perfused hydronephrotic kidney.
    Ozawa Y; Hayashi K; Nagahama T; Fujiwara K; Saruta T
    Hypertension; 2001 Sep; 38(3):343-7. PubMed ID: 11566902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KCl and angiotensin responses in isolated rat renal arterioles: effects of diltiazem and low-calcium medium.
    Conger JD; Falk SA
    Am J Physiol; 1993 Jan; 264(1 Pt 2):F134-40. PubMed ID: 8430823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient receptor potential channels in rat renal microcirculation: actions of angiotensin II.
    Takenaka T; Suzuki H; Okada H; Inoue T; Kanno Y; Ozawa Y; Hayashi K; Saruta T
    Kidney Int; 2002 Aug; 62(2):558-65. PubMed ID: 12110018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergent mechanisms of ATP-sensitive K+ channel-induced vasodilation in renal afferent and efferent arterioles. Evidence of L-type Ca2+ channel-dependent and -independent actions of pinacidil.
    Reslerova M; Loutzenhiser R
    Circ Res; 1995 Dec; 77(6):1114-20. PubMed ID: 7586223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of chloride channels in afferent arteriolar constriction.
    Takenaka T; Kanno Y; Kitamura Y; Hayashi K; Suzuki H; Saruta T
    Kidney Int; 1996 Sep; 50(3):864-72. PubMed ID: 8872961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinase C and calcium channel activation as determinants of renal vasoconstriction by angiotensin II and endothelin.
    Takenaka T; Forster H; Epstein M
    Circ Res; 1993 Oct; 73(4):743-50. PubMed ID: 8396506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vessel- and vasoconstrictor-dependent role of rho/rho-kinase in renal microvascular tone.
    Nakamura A; Hayashi K; Ozawa Y; Fujiwara K; Okubo K; Kanda T; Wakino S; Saruta T
    J Vasc Res; 2003; 40(3):244-51. PubMed ID: 12902637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disparate effects of Ca channel blockade on afferent and efferent arteriolar responses to ANG II.
    Carmines PK; Navar LG
    Am J Physiol; 1989 Jun; 256(6 Pt 2):F1015-20. PubMed ID: 2544103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological heterogeneity of renal glomerular arterioles and distinct [Ca2+]i responses to ANG II.
    Helou CM; Marchetti J
    Am J Physiol; 1997 Jul; 273(1 Pt 2):F84-96. PubMed ID: 9249595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Afferent and efferent arteriolar vasoconstriction to angiotensin II and norepinephrine involves release of Ca2+ from intracellular stores.
    Inscho EW; Imig JD; Cook AK
    Hypertension; 1997 Jan; 29(1 Pt 2):222-7. PubMed ID: 9039106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of protein kinase C in angiotensin II-induced constriction of renal microvessels.
    Nagahama T; Hayashi K; Ozawa Y; Takenaka T; Saruta T
    Kidney Int; 2000 Jan; 57(1):215-23. PubMed ID: 10620202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal arteriolar angiotensin responses during varied adenosine receptor activation.
    Carmines PK; Inscho EW
    Hypertension; 1994 Jan; 23(1 Suppl):I114-9. PubMed ID: 8282342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired Ca2+ signaling attenuates P2X receptor-mediated vasoconstriction of afferent arterioles in angiotensin II hypertension.
    Zhao X; Cook AK; Field M; Edwards B; Zhang S; Zhang Z; Pollock JS; Imig JD; Inscho EW
    Hypertension; 2005 Sep; 46(3):562-8. PubMed ID: 16116048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal nitric oxide synthase-dependent afferent arteriolar function in angiotensin II-induced hypertension.
    Ichihara A; Imig JD; Navar LG
    Hypertension; 1999 Jan; 33(1 Pt 2):462-6. PubMed ID: 9931148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of angiotensin II and norepinephrine on isolated rat afferent and efferent arterioles.
    Yuan BH; Robinette JB; Conger JD
    Am J Physiol; 1990 Mar; 258(3 Pt 2):F741-50. PubMed ID: 2107760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myoglobin facilitates angiotensin II-induced constriction of renal afferent arterioles.
    Liu ZZ; Mathia S; Pahlitzsch T; Wennysia IC; Persson PB; Lai EY; Högner A; Xu MZ; Schubert R; Rosenberger C; Patzak A
    Am J Physiol Renal Physiol; 2017 May; 312(5):F908-F916. PubMed ID: 28052871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.