These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 15628670)

  • 1. Changes in rat lens proteins and glutathione reductase activity with advancing age.
    Katakura K; Kishida K; Hirano H
    Int J Vitam Nutr Res; 2004 Sep; 74(5):329-33. PubMed ID: 15628670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FAD-induced in vitro activation of glutathione reductase in the lens of B2 deficient rats.
    Ono S; Hirano H
    Curr Eye Res; 1984 Apr; 3(4):663-5. PubMed ID: 6713961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Levels of expression of the genes for glutathione reductase, glutathione peroxidase, catalase and CuZn-superoxide dismutase in rat lens and liver.
    Shi S; Bekhor I
    Exp Eye Res; 1994 Aug; 59(2):171-7. PubMed ID: 7835406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of dexamethasone phosphate on FAD-induced in vitro activation of glutathione reductase in the lens.
    Ono S; Hirano H
    Int J Vitam Nutr Res; 1987; 57(1):105. PubMed ID: 3583589
    [No Abstract]   [Full Text] [Related]  

  • 5. Glutathione reductase in human lens epithelium: FAD-induced in vitro activation.
    Horwitz J; Dovrat A; Straatsma BR; Revilla PJ; Lightfoot DO
    Curr Eye Res; 1987 Oct; 6(10):1249-56. PubMed ID: 3677785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme activities and crystallin profiles of clear and cataractous lenses of the RCS rat.
    Dovrat A; Ding LL; Horwitz J
    Exp Eye Res; 1993 Aug; 57(2):217-24. PubMed ID: 8405188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The presence of a human UV filter within the lens represents an oxidative stress.
    Berry Y; Truscott RJ
    Exp Eye Res; 2001 Apr; 72(4):411-21. PubMed ID: 11273669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of riboflavin deficiency on white cell glutathione reductase in rats.
    Müller EM; Bates CJ
    Int J Vitam Nutr Res; 1977; 47(1):46-51. PubMed ID: 844948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of a tryptophan supplemented diet and U.V. radiation on the rat lens.
    Mathur RL; Sahai P
    Lens Eye Toxic Res; 1990; 7(2):143-60. PubMed ID: 2275928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemistry of the ageing rat lens. I. Lens wet weight and lens dry weight with respect to sex differences.
    Bours J; Hockwin O; Fink H
    Ophthalmic Res; 1983; 15(4):198-203. PubMed ID: 6634054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The immunological characterization and isoelectric focusing of water-soluble proteins in the lens related to aging (author's transl)].
    Bours J; Hockwin O
    Klin Monbl Augenheilkd; 1977 Jan; 170(1):51-9. PubMed ID: 557701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bovine and human alpha-crystallins as molecular chaperones: prevention of the inactivation of glutathione reductase by fructation.
    Blakytny R; Harding JJ
    Exp Eye Res; 1997 Jun; 64(6):1051-8. PubMed ID: 9301487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper.
    Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ
    Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lens proteomics: analysis of rat crystallins when lenses are exposed to dexamethasone.
    Wang L; Zhao WC; Yin XL; Ge JY; Bu ZG; Ge HY; Meng QF; Liu P
    Mol Biosyst; 2012 Mar; 8(3):888-901. PubMed ID: 22269969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dehydroalanine crosslinks in human lens.
    Linetsky M; Hill JM; LeGrand RD; Hu F
    Exp Eye Res; 2004 Oct; 79(4):499-512. PubMed ID: 15381034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revival of glutathione reductase in human cataractous and clear lens extracts by thioredoxin and thioredoxin reductase, in conjunction with alpha-crystallin or thioltransferase.
    Yan H; Harding JJ; Xing K; Lou MF
    Curr Eye Res; 2007 May; 32(5):455-63. PubMed ID: 17514531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-insoluble high-molecular-weight and alpha-crystallins as the source of the Scheimpflug light scattering pattern in the rat lens.
    Bours J; Ahrend MH; Wegener A; Hockwin O
    Ophthalmic Res; 1990; 22 Suppl 1():90-4. PubMed ID: 2388761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of mercury on selenium binding to rat lens proteins in vitro.
    Ostádalová I; Babický A; Kopoldová J; Zímová M
    Physiol Bohemoslov; 1989; 38(5):427-32. PubMed ID: 2533982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cataract-related changes in protein aggregates of human lens studied by ultracentrifugation.
    Twardowski J; Hoja D
    Folia Biol (Praha); 1990; 36(6):332-43. PubMed ID: 2279587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methylglyoxal-derived modifications in lens aging and cataract formation.
    Shamsi FA; Lin K; Sady C; Nagaraj RH
    Invest Ophthalmol Vis Sci; 1998 Nov; 39(12):2355-64. PubMed ID: 9804144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.