These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 15629047)

  • 41. Proteome approach to characterize the methylmalonate-semialdehyde dehydrogenase that is regulated by gibberellin.
    Tanaka N; Takahashi H; Kitano H; Matsuoka M; Akao S; Uchimiya H; Komatsu S
    J Proteome Res; 2005; 4(5):1575-82. PubMed ID: 16212409
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1.
    Zhang S; Wang S; Xu Y; Yu C; Shen C; Qian Q; Geisler M; Jiang de A; Qi Y
    Plant Cell Environ; 2015 Apr; 38(4):638-54. PubMed ID: 24995795
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of two proteomics techniques used to identify proteins regulated by gibberellin in rice.
    Komatsu S; Zang X; Tanaka N
    J Proteome Res; 2006 Feb; 5(2):270-6. PubMed ID: 16457592
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa).
    Zhang Y; Lan H; Shao Q; Wang R; Chen H; Tang H; Zhang H; Huang J
    J Exp Bot; 2016 Jan; 67(1):315-26. PubMed ID: 26512055
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An integrated RNA-Seq and network study reveals a complex regulation process of rice embryo during seed germination.
    Wei T; He Z; Tan X; Liu X; Yuan X; Luo Y; Hu S
    Biochem Biophys Res Commun; 2015 Aug; 464(1):176-81. PubMed ID: 26116530
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physiological changes and sHSPs genes relative transcription in relation to the acquisition of seed germination during maturation of hybrid rice seed.
    Zhu LW; Cao DD; Hu QJ; Guan YJ; Hu WM; Nawaz A; Hu J
    J Sci Food Agric; 2016 Mar; 96(5):1764-71. PubMed ID: 26031390
    [TBL] [Abstract][Full Text] [Related]  

  • 47. W-box and G-box elements play important roles in early senescence of rice flag leaf.
    Liu L; Xu W; Hu X; Liu H; Lin Y
    Sci Rep; 2016 Feb; 6():20881. PubMed ID: 26864250
    [TBL] [Abstract][Full Text] [Related]  

  • 48. GA action: turning on de-DELLA repressing signaling.
    Jiang C; Fu X
    Curr Opin Plant Biol; 2007 Oct; 10(5):461-5. PubMed ID: 17900970
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The rice WUSCHEL-related homeobox genes are involved in reproductive organ development, hormone signaling and abiotic stress response.
    Cheng S; Huang Y; Zhu N; Zhao Y
    Gene; 2014 Oct; 549(2):266-74. PubMed ID: 25106855
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Epigenetic Regulation of Gibberellin Metabolism and Signaling.
    Xie Y; Chen L
    Plant Cell Physiol; 2020 Dec; 61(11):1912-1918. PubMed ID: 32745197
    [TBL] [Abstract][Full Text] [Related]  

  • 51. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers.
    Tsuji H; Aya K; Ueguchi-Tanaka M; Shimada Y; Nakazono M; Watanabe R; Nishizawa NK; Gomi K; Shimada A; Kitano H; Ashikari M; Matsuoka M
    Plant J; 2006 Aug; 47(3):427-44. PubMed ID: 16792694
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Quantitative Proteomic Analysis of Brassinosteroid-induced Protein Phosphorylation in Rice (
    Hou Y; Qiu J; Wang Y; Li Z; Zhao J; Tong X; Lin H; Zhang J
    Front Plant Sci; 2017; 8():514. PubMed ID: 28439285
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate Brassinosteroid-mediated growth in rice.
    Hu X; Qian Q; Xu T; Zhang Y; Dong G; Gao T; Xie Q; Xue Y
    PLoS Genet; 2013; 9(3):e1003391. PubMed ID: 23526892
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of Developing Rice Grain Transcriptome Using the Agilent Microarray Platform.
    Püffeld M; Seiler C; Kuhlmann M; Sreenivasulu N; Butardo VM
    Methods Mol Biol; 2019; 1892():277-300. PubMed ID: 30397812
    [TBL] [Abstract][Full Text] [Related]  

  • 55.
    Ahmar S; Gruszka D
    Front Genet; 2022; 13():953458. PubMed ID: 35873468
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Constructing dwarf rice.
    Hedden P
    Nat Biotechnol; 2003 Aug; 21(8):873-4. PubMed ID: 12894201
    [No Abstract]   [Full Text] [Related]  

  • 57. Role of defense/stress-related marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms.
    Jwa NS; Agrawal GK; Tamogami S; Yonekura M; Han O; Iwahashi H; Rakwal R
    Plant Physiol Biochem; 2006; 44(5-6):261-73. PubMed ID: 16806959
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exploring the response of rice (Oryza sativa) leaf to gibberellins: a proteomic strategy.
    Wang X; Han F; Yang M; Yang P; Shen S
    Rice (N Y); 2013 Jul; 6(1):17. PubMed ID: 24280421
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rice proteomics: current status and future perspectives.
    Rakwal R; Agrawal GK
    Electrophoresis; 2003 Oct; 24(19-20):3378-89. PubMed ID: 14595685
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rice cDNA microarray-based gene expression profiling of the response to flagellin perception in cultured rice cells.
    Fujiwara S; Tanaka N; Kaneda T; Takayama S; Isogai A; Che FS
    Mol Plant Microbe Interact; 2004 Sep; 17(9):986-98. PubMed ID: 15384489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.