BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 15629127)

  • 1. Characterization of Aquifex aeolicus RNase E/G.
    Kaberdin VR; Bizebard T
    Biochem Biophys Res Commun; 2005 Feb; 327(2):382-92. PubMed ID: 15629127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quaternary structure and biochemical properties of mycobacterial RNase E/G.
    Zeller ME; Csanadi A; Miczak A; Rose T; Bizebard T; Kaberdin VR
    Biochem J; 2007 Apr; 403(1):207-15. PubMed ID: 17201693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single processing center models for human Dicer and bacterial RNase III.
    Zhang H; Kolb FA; Jaskiewicz L; Westhof E; Filipowicz W
    Cell; 2004 Jul; 118(1):57-68. PubMed ID: 15242644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(A)- and poly(U)-specific RNA 3' tail shortening by E. coli ribonuclease E.
    Huang H; Liao J; Cohen SN
    Nature; 1998 Jan; 391(6662):99-102. PubMed ID: 9422514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensing of 5' monophosphate by Escherichia coli RNase G can significantly enhance association with RNA and stimulate the decay of functional mRNA transcripts in vivo.
    Jourdan SS; McDowall KJ
    Mol Microbiol; 2008 Jan; 67(1):102-15. PubMed ID: 18078441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific RNase E cleavage of oligonucleotides and inhibition by stem-loops.
    McDowall KJ; Kaberdin VR; Wu SW; Cohen SN; Lin-Chao S
    Nature; 1995 Mar; 374(6519):287-90. PubMed ID: 7533896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5'-end maturation of tRNA in aquifex aeolicus.
    Marszalkowski M; Willkomm DK; Hartmann RK
    Biol Chem; 2008 Apr; 389(4):395-403. PubMed ID: 18208351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA processing in Aquifex aeolicus involves RNase E/G and an RNase P-like activity.
    Lombo TB; Kaberdin VR
    Biochem Biophys Res Commun; 2008 Feb; 366(2):457-63. PubMed ID: 18070593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residues 36-42 of liver RNase PL3 contribute to its uridine-preferring substrate specificity. Cloning of the cDNA and site-directed mutagenesis studies.
    Vicentini AM; Hemmings BA; Hofsteenge J
    Protein Sci; 1994 Mar; 3(3):459-66. PubMed ID: 8019417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization of the RNase E S1 domain and identification of its oligonucleotide-binding and dimerization interfaces.
    Schubert M; Edge RE; Lario P; Cook MA; Strynadka NC; Mackie GA; McIntosh LP
    J Mol Biol; 2004 Jul; 341(1):37-54. PubMed ID: 15312761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The substrate specificity of tRNA (m1G37) methyltransferase (TrmD) from Aquifex aeolicus.
    Takeda H; Toyooka T; Ikeuchi Y; Yokobori S; Okadome K; Takano F; Oshima T; Suzuki T; Endo Y; Hori H
    Genes Cells; 2006 Dec; 11(12):1353-65. PubMed ID: 17121543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-evolution of tRNA 3' trailer sequences with 3' processing enzymes in bacteria.
    Li Z; Gong X; Joshi VH; Li M
    RNA; 2005 May; 11(5):567-77. PubMed ID: 15811923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The N-terminal domain of the rne gene product has RNase E activity and is non-overlapping with the arginine-rich RNA-binding site.
    McDowall KJ; Cohen SN
    J Mol Biol; 1996 Jan; 255(3):349-55. PubMed ID: 8568879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover.
    Callaghan AJ; Marcaida MJ; Stead JA; McDowall KJ; Scott WG; Luisi BF
    Nature; 2005 Oct; 437(7062):1187-91. PubMed ID: 16237448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endonucleolytic processing of CCA-less tRNA precursors by RNase Z in Bacillus subtilis.
    Pellegrini O; Nezzar J; Marchfelder A; Putzer H; Condon C
    EMBO J; 2003 Sep; 22(17):4534-43. PubMed ID: 12941704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNase Z in Escherichia coli plays a significant role in mRNA decay.
    Perwez T; Kushner SR
    Mol Microbiol; 2006 May; 60(3):723-37. PubMed ID: 16629673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escherichia coli RNase E and RNase G cleave a Bacillus subtilis transcript at the same site in a structure-dependent manner.
    Hambraeus G; Rutberg B
    Arch Microbiol; 2004 Feb; 181(2):137-43. PubMed ID: 14685649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential cleavage of degradative intermediates of rpsT mRNA by the Escherichia coli RNA degradosome.
    Spickler C; Stronge V; Mackie GA
    J Bacteriol; 2001 Feb; 183(3):1106-9. PubMed ID: 11208812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of RNA structure and susceptibility to RNase E in regulation of a cold shock mRNA, cspA mRNA.
    Hankins JS; Zappavigna C; Prud'homme-Généreux A; Mackie GA
    J Bacteriol; 2007 Jun; 189(12):4353-8. PubMed ID: 17416651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate discrimination in RNase P RNA-mediated cleavage: importance of the structural environment of the RNase P cleavage site.
    Kikovska E; Brännvall M; Kufel J; Kirsebom LA
    Nucleic Acids Res; 2005; 33(6):2012-21. PubMed ID: 15817565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.