These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 15629570)
1. Dynamic adsorption of trinitrotoluene on granular activated carbon. Marinović V; Ristić M; Dostanić M J Hazard Mater; 2005 Jan; 117(2-3):121-8. PubMed ID: 15629570 [TBL] [Abstract][Full Text] [Related]
2. Equilibria and dynamics of liquid-phase trinitrotoluene adsorption on granular activated carbon: effect of temperature and pH. Lee JW; Yang TH; Shim WG; Kwon TO; Moon IS J Hazard Mater; 2007 Mar; 141(1):185-92. PubMed ID: 16889891 [TBL] [Abstract][Full Text] [Related]
3. Adsorption mechanism and property of a novel adsorption material PAM/SiO2 towards 2,4,6-trinitrotoluene. An F; Feng X; Gao B J Hazard Mater; 2009 Aug; 168(1):352-7. PubMed ID: 19303701 [TBL] [Abstract][Full Text] [Related]
4. Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies. Goel J; Kadirvelu K; Rajagopal C; Kumar Garg V J Hazard Mater; 2005 Oct; 125(1-3):211-20. PubMed ID: 16019141 [TBL] [Abstract][Full Text] [Related]
5. Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. Karthikeyan T; Rajgopal S; Miranda LR J Hazard Mater; 2005 Sep; 124(1-3):192-9. PubMed ID: 15927367 [TBL] [Abstract][Full Text] [Related]
6. 2, 4 dichlorophenol (2, 4-DCP) sorption from aqueous solution using granular activated carbon and polymeric adsorbents and studies on effect of temperature on activated carbon adsorption. Ghatbandhe AS; Yenkie MK J Environ Sci Eng; 2008 Apr; 50(2):163-8. PubMed ID: 19295102 [TBL] [Abstract][Full Text] [Related]
7. Anaerobic degradation of 2,4,6-trinitrotoluene in granular activated carbon fluidized bed and batch reactors. Moteleb MA; Suidan MT; Kim J; Davel JL; Adrian NR Water Sci Technol; 2001; 43(1):67-75. PubMed ID: 11379114 [TBL] [Abstract][Full Text] [Related]
8. Adsorptive removal of acrylonitrile by commercial grade activated carbon: kinetics, equilibrium and thermodynamics. Kumar A; Prasad B; Mishra IM J Hazard Mater; 2008 Apr; 152(2):589-600. PubMed ID: 17720310 [TBL] [Abstract][Full Text] [Related]
9. Removal of mercury from water by fixed bed activated carbon columns. Goyal M; Bhagat M; Dhawan R J Hazard Mater; 2009 Nov; 171(1-3):1009-15. PubMed ID: 19632046 [TBL] [Abstract][Full Text] [Related]
10. Adsorption of p-nitroaniline from aqueous solutions onto activated carbon fiber prepared from cotton stalk. Li K; Zheng Z; Feng J; Zhang J; Luo X; Zhao G; Huang X J Hazard Mater; 2009 Jul; 166(2-3):1180-5. PubMed ID: 19157698 [TBL] [Abstract][Full Text] [Related]
11. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. Mohan D; Singh KP; Singh VK J Hazard Mater; 2006 Jul; 135(1-3):280-95. PubMed ID: 16442720 [TBL] [Abstract][Full Text] [Related]
12. Removal of chromium Cr(VI) by low-cost chemically activated carbon materials from water. Yue Z; Bender SE; Wang J; Economy J J Hazard Mater; 2009 Jul; 166(1):74-8. PubMed ID: 19091466 [TBL] [Abstract][Full Text] [Related]
13. Simulataneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by dielectric barrier discharge plasma. Qu GZ; Lu N; Li J; Wu Y; Li GF; Li D J Hazard Mater; 2009 Dec; 172(1):472-8. PubMed ID: 19656621 [TBL] [Abstract][Full Text] [Related]
14. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics. Amin NK J Hazard Mater; 2009 Jun; 165(1-3):52-62. PubMed ID: 18986765 [TBL] [Abstract][Full Text] [Related]
15. Equilibrium, kinetic and thermodynamic studies on the adsorption of 2-nitroaniline onto activated carbon prepared from cotton stalk fibre. Li K; Zheng Z; Huang X; Zhao G; Feng J; Zhang J J Hazard Mater; 2009 Jul; 166(1):213-20. PubMed ID: 19111985 [TBL] [Abstract][Full Text] [Related]
16. Anaerobic treatment of pinkwater in a fluidized bed reactor containing GAC. Maloney SW; Adrian NR; Hickey RF; Heine RL J Hazard Mater; 2002 May; 92(1):77-88. PubMed ID: 11976000 [TBL] [Abstract][Full Text] [Related]
17. Batch and column adsorption of herbicide fluroxypyr on different types of activated carbons from water with varied degrees of hardness and alkalinity. Pastrana-Martínez LM; López-Ramón MV; Fontecha-Cámara MA; Moreno-Castilla C Water Res; 2010 Feb; 44(3):879-85. PubMed ID: 19822344 [TBL] [Abstract][Full Text] [Related]
18. Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments. Liu G; Ma J; Li X; Qin Q J Hazard Mater; 2009 May; 164(2-3):1275-80. PubMed ID: 18977073 [TBL] [Abstract][Full Text] [Related]
19. Adsorption of Bismark Brown dye on activated carbons prepared from rubberwood sawdust (Hevea brasiliensis) using different activation methods. Prakash Kumar BG; Miranda LR; Velan M J Hazard Mater; 2005 Nov; 126(1-3):63-70. PubMed ID: 16040190 [TBL] [Abstract][Full Text] [Related]
20. Regeneration of granular activated carbon with adsorbed trichloroethylene using wet peroxide oxidation. Okawa K; Suzuki K; Takeshita T; Nakano K Water Res; 2007 Mar; 41(5):1045-51. PubMed ID: 17224174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]