These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Substituent effects on O--H bond dissociation enthalpies and ionization potentials of catechols: a DFT study and its implications in the rational design of phenolic antioxidants and elucidation of structure-activity relationships for flavonoid antioxidants. Zhang HY; Sun YM; Wang XL Chemistry; 2003 Jan; 9(2):502-8. PubMed ID: 12532299 [TBL] [Abstract][Full Text] [Related]
7. Accelerated cytotoxic mechanism screening of hydralazine using an in vitro hepatocyte inflammatory cell peroxidase model. Tafazoli S; O'Brien PJ Chem Res Toxicol; 2008 Apr; 21(4):904-10. PubMed ID: 18393451 [TBL] [Abstract][Full Text] [Related]
9. Novel 2-substituted nitronyl nitroxides as free radical scavengers: synthesis, biological evaluation and structure-activity relationship. Wu Y; Bi L; Bi W; Li Z; Zhao M; Wang C; Ju J; Peng S Bioorg Med Chem; 2006 Aug; 14(16):5711-20. PubMed ID: 16650996 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and cytotoxic profile of 3,4-methylenedioxymethamphetamine ("ecstasy") and its metabolites on undifferentiated PC12 cells: A putative structure-toxicity relationship. Milhazes N; Cunha-Oliveira T; Martins P; Garrido J; Oliveira C; Rego AC; Borges F Chem Res Toxicol; 2006 Oct; 19(10):1294-304. PubMed ID: 17040098 [TBL] [Abstract][Full Text] [Related]
11. Assessment of the metabolism and intrinsic reactivity of a novel catechol metabolite. Hutzler JM; Melton RJ; Rumsey JM; Thompson DC; Rock DA; Wienkers LC Chem Res Toxicol; 2008 May; 21(5):1125-33. PubMed ID: 18407675 [TBL] [Abstract][Full Text] [Related]
12. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties. Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480 [TBL] [Abstract][Full Text] [Related]
13. Effect of alpha-lipoic acid on LPS-induced oxidative stress in the heart. Goraca A; Piechota A; Huk-Kolega H J Physiol Pharmacol; 2009 Mar; 60(1):61-8. PubMed ID: 19439808 [TBL] [Abstract][Full Text] [Related]
15. Protective effects of ellagic and chlorogenic acids against oxidative stress in PC12 cells. Pavlica S; Gebhardt R Free Radic Res; 2005 Dec; 39(12):1377-90. PubMed ID: 16298868 [TBL] [Abstract][Full Text] [Related]
16. The reactivity of ortho-methoxy-substituted catechol radicals with sulfhydryl groups: contribution for the comprehension of the mechanism of inhibition of NADPH oxidase by apocynin. Kanegae MP; da Fonseca LM; Brunetti IL; Silva SO; Ximenes VF Biochem Pharmacol; 2007 Aug; 74(3):457-64. PubMed ID: 17544376 [TBL] [Abstract][Full Text] [Related]
17. Chroman/catechol hybrids: synthesis and evaluation of their activity against oxidative stress induced cellular damage. Koufaki M; Theodorou E; Galaris D; Nousis L; Katsanou ES; Alexis MN J Med Chem; 2006 Jan; 49(1):300-6. PubMed ID: 16392814 [TBL] [Abstract][Full Text] [Related]
18. Vulnerability of glial cells to hydrogen peroxide in cultured hippocampal slices. Feeney CJ; Frantseva MV; Carlen PL; Pennefather PS; Shulyakova N; Shniffer C; Mills LR Brain Res; 2008 Mar; 1198():1-15. PubMed ID: 18261717 [TBL] [Abstract][Full Text] [Related]
19. Cytotoxic effects of catechol to neuroblastoma N2a cells. Lima RM; Alvarez LD; Costa MF; Costa SL; Clarêncio J; El-Bachá RS Gen Physiol Biophys; 2008 Dec; 27(4):306-14. PubMed ID: 19202205 [TBL] [Abstract][Full Text] [Related]
20. A selective de-O-methylation of guaiacyl lignans to corresponding catechol derivatives by 2-iodoxybenzoic acid (IBX). The role of the catechol moiety on the toxicity of lignans. Bernini R; Barontini M; Mosesso P; Pepe G; Willför SM; Sjöholm RE; Eklund PC; Saladino R Org Biomol Chem; 2009 Jun; 7(11):2367-77. PubMed ID: 19462048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]