BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 15629913)

  • 21. Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation.
    Wittchen M; Busche T; Gaspar AH; Lee JH; Ton-That H; Kalinowski J; Tauch A
    BMC Genomics; 2018 Jan; 19(1):82. PubMed ID: 29370758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of zinc and Zur-regulated genes in Corynebacterium diphtheriae.
    Peng ED; Schmitt MP
    PLoS One; 2019; 14(8):e0221711. PubMed ID: 31454392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of novel iron-regulated, surface-anchored hemin-binding proteins in Corynebacterium diphtheriae.
    Allen CE; Burgos JM; Schmitt MP
    J Bacteriol; 2013 Jun; 195(12):2852-63. PubMed ID: 23585541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of diphtheria toxin repressor-operator interactions and characterization of a mutant repressor with decreased binding activity for divalent metals.
    Schmitt MP; Holmes RK
    Mol Microbiol; 1993 Jul; 9(1):173-81. PubMed ID: 8412663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Both Corynebacterium diphtheriae DtxR(E175K) and Mycobacterium tuberculosis IdeR(D177K) are dominant positive repressors of IdeR-regulated genes in M. tuberculosis.
    Manabe YC; Hatem CL; Kesavan AK; Durack J; Murphy JR
    Infect Immun; 2005 Sep; 73(9):5988-94. PubMed ID: 16113319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic and biochemical evidence for a siderophore-dependent iron transport system in Corynebacterium diphtheriae.
    Russell LM; Cryz SJ; Holmes RK
    Infect Immun; 1984 Jul; 45(1):143-9. PubMed ID: 6429042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcription of the contiguous sigB, dtxR, and galE genes in Corynebacterium diphtheriae: evidence for multiple transcripts and regulation by environmental factors.
    Oram DM; Jacobson AD; Holmes RK
    J Bacteriol; 2006 Apr; 188(8):2959-73. PubMed ID: 16585757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of specific nucleotide substitutions in DtxR-specific operators of Corynebacterium diphtheriae that dramatically affect DtxR binding, operator function, and promoter strength.
    Lee JH; Holmes RK
    J Bacteriol; 2000 Jan; 182(2):432-8. PubMed ID: 10629190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel aerobactin utilization cluster in Vibrio vulnificus with a gene involved in the transcription regulation of the iutA homologue.
    Tanabe T; Naka A; Aso H; Nakao H; Narimatsu S; Inoue Y; Ono T; Yamamoto S
    Microbiol Immunol; 2005; 49(9):823-34. PubMed ID: 16172537
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloning and sequence analysis of the Corynebacterium diphtheriae dtxR homologue from Streptomyces lividans and S. pilosus encoding a putative iron repressor protein.
    Günter-Seeboth K; Schupp T
    Gene; 1995 Dec; 166(1):117-9. PubMed ID: 8529874
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of a two-component signal transduction system from Corynebacterium diphtheriae that activates gene expression in response to the presence of heme and hemoglobin.
    Schmitt MP
    J Bacteriol; 1999 Sep; 181(17):5330-40. PubMed ID: 10464204
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Utilization of host iron sources by Corynebacterium diphtheriae: multiple hemoglobin-binding proteins are essential for the use of iron from the hemoglobin-haptoglobin complex.
    Allen CE; Schmitt MP
    J Bacteriol; 2015 Feb; 197(3):553-62. PubMed ID: 25404705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of DtxR regulon: identification of binding sites and operons controlled by Diphtheria toxin repressor in Corynebacterium diphtheriae.
    Yellaboina S; Ranjan S; Chakhaiyar P; Hasnain SE; Ranjan A
    BMC Microbiol; 2004 Sep; 4():38. PubMed ID: 15447793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification and analysis of a siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58.
    Rondon MR; Ballering KS; Thomas MG
    Microbiology (Reading); 2004 Nov; 150(Pt 11):3857-3866. PubMed ID: 15528670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel hemin binding domains in the Corynebacterium diphtheriae HtaA protein interact with hemoglobin and are critical for heme iron utilization by HtaA.
    Allen CE; Schmitt MP
    J Bacteriol; 2011 Oct; 193(19):5374-85. PubMed ID: 21803991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Purification and structural characterization of siderophore (corynebactin) from Corynebacterium diphtheriae.
    Zajdowicz S; Haller JC; Krafft AE; Hunsucker SW; Mant CT; Duncan MW; Hodges RS; Jones DN; Holmes RK
    PLoS One; 2012; 7(4):e34591. PubMed ID: 22514641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The DtxR regulon of Corynebacterium glutamicum.
    Wennerhold J; Bott M
    J Bacteriol; 2006 Apr; 188(8):2907-18. PubMed ID: 16585752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of genes that encode DtxR-like transcriptional regulators in pathogenic and saprophytic corynebacterial species.
    Oram DM; Avdalovic A; Holmes RK
    Infect Immun; 2004 Apr; 72(4):1885-95. PubMed ID: 15039307
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of truncated variants of the iron dependent transcriptional regulators from Corynebacterium diphtheriae and Mycobacterium tuberculosis.
    Oram DM; Must LM; Spinler JK; Twiddy EM; Holmes RK
    FEMS Microbiol Lett; 2005 Feb; 243(1):1-8. PubMed ID: 15667993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of siderophore biosynthesis genes essential for growth of Aeromonas salmonicida under iron limitation conditions.
    Najimi M; Lemos ML; Osorio CR
    Appl Environ Microbiol; 2008 Apr; 74(8):2341-8. PubMed ID: 18296539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.