These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 15629923)

  • 41. The CodY pleiotropic repressor controls virulence in gram-positive pathogens.
    Stenz L; Francois P; Whiteson K; Wolz C; Linder P; Schrenzel J
    FEMS Immunol Med Microbiol; 2011 Jul; 62(2):123-39. PubMed ID: 21539625
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Bacillus subtilis mannose regulator, ManR, a DNA-binding protein regulated by HPr and its cognate PTS transporter ManP.
    Wenzel M; Altenbuchner J
    Mol Microbiol; 2013 May; 88(3):562-76. PubMed ID: 23551403
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Roadblock repression of transcription by Bacillus subtilis CodY.
    Belitsky BR; Sonenshein AL
    J Mol Biol; 2011 Aug; 411(4):729-43. PubMed ID: 21699902
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Separate contributions of UhpA and CAP to activation of transcription of the uhpT promoter of Escherichia coli.
    Olekhnovich IN; Dahl JL; Kadner RJ
    J Mol Biol; 1999 Oct; 292(5):973-86. PubMed ID: 10512697
    [TBL] [Abstract][Full Text] [Related]  

  • 45. GlnR-mediated regulation of nitrogen metabolism in Lactococcus lactis.
    Larsen R; Kloosterman TG; Kok J; Kuipers OP
    J Bacteriol; 2006 Jul; 188(13):4978-82. PubMed ID: 16788206
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of branched-chain amino acid transport in Bacillus subtilis CodY activity.
    Belitsky BR
    J Bacteriol; 2015 Apr; 197(8):1330-8. PubMed ID: 25645558
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dissecting complex metabolic integration provides direct genetic evidence for CodY activation by guanine nucleotides.
    Brinsmade SR; Sonenshein AL
    J Bacteriol; 2011 Oct; 193(20):5637-48. PubMed ID: 21856856
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteomic identification of a novel Anaplasma phagocytophilum DNA binding protein that regulates a putative transcription factor.
    Wang X; Kikuchi T; Rikihisa Y
    J Bacteriol; 2007 Jul; 189(13):4880-6. PubMed ID: 17483233
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Two acid-inducible promoters from Lactococcus lactis require the cis-acting ACiD-box and the transcription regulator RcfB.
    Madsen SM; Hindré T; Le Pennec JP; Israelsen H; Dufour A
    Mol Microbiol; 2005 May; 56(3):735-46. PubMed ID: 15819628
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expression of six peptidases from Lactobacillus helveticus in Lactococcus lactis.
    Luoma S; Peltoniemi K; Joutsjoki V; Rantanen T; Tamminen M; Heikkinen I; Palva A
    Appl Environ Microbiol; 2001 Mar; 67(3):1232-8. PubMed ID: 11229915
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A region of Bacillus subtilis CodY protein required for interaction with DNA.
    Joseph P; Ratnayake-Lecamwasam M; Sonenshein AL
    J Bacteriol; 2005 Jun; 187(12):4127-39. PubMed ID: 15937175
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363.
    Wegmann U; O'Connell-Motherway M; Zomer A; Buist G; Shearman C; Canchaya C; Ventura M; Goesmann A; Gasson MJ; Kuipers OP; van Sinderen D; Kok J
    J Bacteriol; 2007 Apr; 189(8):3256-70. PubMed ID: 17307855
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fructose utilization in Lactococcus lactis as a model for low-GC gram-positive bacteria: its regulator, signal, and DNA-binding site.
    Barrière C; Veiga-da-Cunha M; Pons N; Guédon E; van Hijum SA; Kok J; Kuipers OP; Ehrlich DS; Renault P
    J Bacteriol; 2005 Jun; 187(11):3752-61. PubMed ID: 15901699
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of the DNA sequence downstream of the Bacillus subtilis hut promoter in regulation of the hut operon.
    Eda S; Hoshino T; Oda M
    Biosci Biotechnol Biochem; 2000 Mar; 64(3):484-91. PubMed ID: 10803944
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The zinc-responsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolor A3(2).
    Shin JH; Oh SY; Kim SJ; Roe JH
    J Bacteriol; 2007 Jun; 189(11):4070-7. PubMed ID: 17416659
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiple-peptidase mutants of Lactococcus lactis are severely impaired in their ability to grow in milk.
    Mierau I; Kunji ER; Leenhouts KJ; Hellendoorn MA; Haandrikman AJ; Poolman B; Konings WN; Venema G; Kok J
    J Bacteriol; 1996 May; 178(10):2794-803. PubMed ID: 8631666
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The structure of the pleiotropic transcription regulator CodY provides insight into its GTP-sensing mechanism.
    Han AR; Kang HR; Son J; Kwon DH; Kim S; Lee WC; Song HK; Song MJ; Hwang KY
    Nucleic Acids Res; 2016 Nov; 44(19):9483-9493. PubMed ID: 27596595
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome-wide transcriptional responses to carbon starvation in nongrowing Lactococcus lactis.
    Ercan O; Wels M; Smid EJ; Kleerebezem M
    Appl Environ Microbiol; 2015 Apr; 81(7):2554-61. PubMed ID: 25636846
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Integration of metabolism and virulence by Clostridium difficile CodY.
    Dineen SS; McBride SM; Sonenshein AL
    J Bacteriol; 2010 Oct; 192(20):5350-62. PubMed ID: 20709897
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulation of CodY activity through modulation of intracellular branched-chain amino acid pools.
    Brinsmade SR; Kleijn RJ; Sauer U; Sonenshein AL
    J Bacteriol; 2010 Dec; 192(24):6357-68. PubMed ID: 20935095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.