BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1563052)

  • 21. Efficient repair of large DNA loops in Saccharomyces cerevisiae.
    Corrette-Bennett SE; Mohlman NL; Rosado Z; Miret JJ; Hess PM; Parker BO; Lahue RS
    Nucleic Acids Res; 2001 Oct; 29(20):4134-43. PubMed ID: 11600702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The yeast rad18 mutator specifically increases G.C----T.A transversions without reducing correction of G-A or C-T mismatches to G.C pairs.
    Kunz BA; Kang XL; Kohalmi L
    Mol Cell Biol; 1991 Jan; 11(1):218-25. PubMed ID: 1986222
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct roles for the Saccharomyces cerevisiae mismatch repair proteins in heteroduplex rejection, mismatch repair and nonhomologous tail removal.
    Goldfarb T; Alani E
    Genetics; 2005 Feb; 169(2):563-74. PubMed ID: 15489516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The conversion gradient at HIS4 of Saccharomyces cerevisiae. I. Heteroduplex rejection and restoration of Mendelian segregation.
    Hillers KJ; Stahl FW
    Genetics; 1999 Oct; 153(2):555-72. PubMed ID: 10511539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strand interruptions confer strand preference during intracellular correction of a plasmid-borne mismatch in Saccharomyces cerevisiae.
    Yang Y; Kang X; Kohalmi L; Karthikeyan R; Kunz BA
    Curr Genet; 1999 Jun; 35(5):499-505. PubMed ID: 10369956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Excision repair influences the site and strand specificity of sunlight mutagenesis in yeast.
    Armstrong JD; Kunz BA
    Mutat Res; 1992 Aug; 274(2):123-33. PubMed ID: 1378204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork.
    Karthikeyan R; Vonarx EJ; Straffon AF; Simon M; Faye G; Kunz BA
    J Mol Biol; 2000 Jun; 299(2):405-19. PubMed ID: 10860748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Specificity of mismatch repair following transformation of Saccharomyces cerevisiae with heteroduplex plasmid DNA.
    Bishop DK; Andersen J; Kolodner RD
    Proc Natl Acad Sci U S A; 1989 May; 86(10):3713-7. PubMed ID: 2498874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of mismatch repair and RAD1 genes on interchromosomal crossover recombination in Saccharomyces cerevisiae.
    Nicholson A; Fabbri RM; Reeves JW; Crouse GF
    Genetics; 2006 Jun; 173(2):647-59. PubMed ID: 16582436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic and molecular analysis of recombination events in Saccharomyces cerevisiae occurring in the presence of the hyper-recombination mutation hpr1.
    Aguilera A; Klein HL
    Genetics; 1989 Jul; 122(3):503-17. PubMed ID: 2668113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Yeast DNA recombination and repair proteins Rad1 and Rad10 constitute a complex in vivo mediated by localized hydrophobic domains.
    Bardwell AJ; Bardwell L; Johnson DK; Friedberg EC
    Mol Microbiol; 1993 Jun; 8(6):1177-88. PubMed ID: 8361362
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of heteroduplex DNA molecules among the products of Saccharomyces cerevisiae meiosis.
    Lichten M; Goyon C; Schultes NP; Treco D; Szostak JW; Haber JE; Nicolas A
    Proc Natl Acad Sci U S A; 1990 Oct; 87(19):7653-7. PubMed ID: 2217196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of the loss of mismatch repair genes on single-strand annealing between divergent sequences in Saccharomyces cerevisiae.
    Lim YS; Choi JH; Ahn KJ; Kim MK; Bae SH
    J Microbiol; 2021 Apr; 59(4):401-409. PubMed ID: 33779953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1.
    Sugawara N; Goldfarb T; Studamire B; Alani E; Haber JE
    Proc Natl Acad Sci U S A; 2004 Jun; 101(25):9315-20. PubMed ID: 15199178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mismatch repair proteins regulate heteroduplex formation during mitotic recombination in yeast.
    Chen W; Jinks-Robertson S
    Mol Cell Biol; 1998 Nov; 18(11):6525-37. PubMed ID: 9774668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitotic sectored colonies: evidence of heteroduplex DNA formation during direct repeat recombination.
    Ronne H; Rothstein R
    Proc Natl Acad Sci U S A; 1988 Apr; 85(8):2696-700. PubMed ID: 3282237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of DNA sequence identity on efficiency of targeted gene replacement.
    Negritto MT; Wu X; Kuo T; Chu S; Bailis AM
    Mol Cell Biol; 1997 Jan; 17(1):278-86. PubMed ID: 8972208
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rad51-mediated double-strand break repair and mismatch correction of divergent substrates.
    Anand R; Beach A; Li K; Haber J
    Nature; 2017 Apr; 544(7650):377-380. PubMed ID: 28405019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The large loop repair and mismatch repair pathways of Saccharomyces cerevisiae act on distinct substrates during meiosis.
    Jensen LE; Jauert PA; Kirkpatrick DT
    Genetics; 2005 Jul; 170(3):1033-43. PubMed ID: 15879514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for independent mismatch repair processing on opposite sides of a double-strand break in Saccharomyces cerevisiae.
    Weng YS; Nickoloff JA
    Genetics; 1998 Jan; 148(1):59-70. PubMed ID: 9475721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.