BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 15630582)

  • 1. Application of cyanide hydrolase from Klebsiella sp. in a biosensor system for the detection of low-level cyanide.
    Mak KK; Law AW; Tokuda S; Yanase H; Renneberg R
    Appl Microbiol Biotechnol; 2005 Jun; 67(5):631-6. PubMed ID: 15630582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An amperometric bi-enzyme sensor for determination of formate using cofactor regeneration.
    Mak KK; Wollenberger U; Scheller FW; Renneberg R
    Biosens Bioelectron; 2003 Aug; 18(9):1095-100. PubMed ID: 12788551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amperometric sensor for cyanide utilizing cyanidase and formate dehydrogenase.
    Ketterer L; Keusgen M
    Anal Chim Acta; 2010 Jul; 673(1):54-9. PubMed ID: 20630178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic assimilation of cyanide via pterin-dependent oxygenolytic cleavage to ammonia and formate in Pseudomonas fluorescens NCIMB 11764.
    Fernandez RF; Dolghih E; Kunz DA
    Appl Environ Microbiol; 2004 Jan; 70(1):121-8. PubMed ID: 14711633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of L-phenylalanine based on an NADH-detecting biosensor.
    Huang T; Warsinke A; Kuwana T; Scheller FW
    Anal Chem; 1998 Mar; 70(5):991-7. PubMed ID: 9511473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and synthesis of a long-wavelength latent fluorogenic substrate for salicylate hydroxylase: a useful fluorimetric indicator for analyte determination by dehydrogenase-coupled biosensors.
    Huang ST; Teng CJ; Lee YH; Wu JY; Wang KL; Lin CM
    Anal Chem; 2010 Sep; 82(17):7329-34. PubMed ID: 20695438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate.
    Hartmann T; Leimkühler S
    FEBS J; 2013 Dec; 280(23):6083-96. PubMed ID: 24034888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and biochemical characterization of the soluble formate dehydrogenase, a molybdoenzyme from Alcaligenes eutrophus.
    Friedebold J; Bowien B
    J Bacteriol; 1993 Aug; 175(15):4719-28. PubMed ID: 8335630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial surface displaying formate dehydrogenase and its application in optical detection of formate.
    Liu A; Feng R; Liang B
    Enzyme Microb Technol; 2016 Sep; 91():59-65. PubMed ID: 27444330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Formate from CO
    Yu X; Niks D; Ge X; Liu H; Hille R; Mulchandani A
    Biochemistry; 2019 Apr; 58(14):1861-1868. PubMed ID: 30839197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic Electrosynthesis of Formic Acid through Carbon Dioxide Reduction in a Bioelectrochemical System: Effect of Immobilization and Carbonic Anhydrase Addition.
    Srikanth S; Alvarez-Gallego Y; Vanbroekhoven K; Pant D
    Chemphyschem; 2017 Nov; 18(22):3174-3181. PubMed ID: 28303650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADH dehydrogenase-like behavior of nitrogen-doped graphene and its application in NAD(+)-dependent dehydrogenase biosensing.
    Gai PP; Zhao CE; Wang Y; Abdel-Halim ES; Zhang JR; Zhu JJ
    Biosens Bioelectron; 2014 Dec; 62():170-6. PubMed ID: 24999994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltammetric biosensors for the determination of formate and glucose-6-phosphate based on the measurement of dehydrogenase-generated NADH and NADPH.
    Hung Tzang C; Yuan R; Yang M
    Biosens Bioelectron; 2001 May; 16(3):211-9. PubMed ID: 11340000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two W-containing formate dehydrogenases (CO2-reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans.
    de Bok FA; Hagedoorn PL; Silva PJ; Hagen WR; Schiltz E; Fritsche K; Stams AJ
    Eur J Biochem; 2003 Jun; 270(11):2476-85. PubMed ID: 12755703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic cyanide degradation by cell-free extract of Rhodococcus UKMP-5M.
    Nallapan Maniyam M; Sjahrir F; Latif Ibrahim A; Cass AE
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(4):357-64. PubMed ID: 25723061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative routes of enzymic cyanide metabolism in Pseudomonas fluorescens NCIMB 11764.
    Kunz DA; Wang CS; Chen JL
    Microbiology (Reading); 1994 Jul; 140 ( Pt 7)():1705-12. PubMed ID: 8075806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosensor for rapid determination of 3-hydroxybutyrate using bi-enzyme system.
    Kwan RC; Hon PY; Mak WC; Law LY; Hu J; Renneberg R
    Biosens Bioelectron; 2006 Jan; 21(7):1101-6. PubMed ID: 15886000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into the NAD
    Yilmazer B; Isupov MN; De Rose SA; Bulut H; Benninghoff JC; Binay B; Littlechild JA
    J Struct Biol; 2020 Dec; 212(3):107657. PubMed ID: 33148525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES).
    Srikanth S; Maesen M; Dominguez-Benetton X; Vanbroekhoven K; Pant D
    Bioresour Technol; 2014 Aug; 165():350-4. PubMed ID: 24565874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film.
    Rahman MM; Shiddiky MJ; Rahman MA; Shim YB
    Anal Biochem; 2009 Jan; 384(1):159-65. PubMed ID: 18851940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.