These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
521 related articles for article (PubMed ID: 15630694)
1. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells. Grecco HE; Lidke KA; Heintzmann R; Lidke DS; Spagnuolo C; Martinez OE; Jares-Erijman EA; Jovin TM Microsc Res Tech; 2004 Nov; 65(4-5):169-79. PubMed ID: 15630694 [TBL] [Abstract][Full Text] [Related]
2. Reversible dimerization of EGFR revealed by single-molecule fluorescence imaging using quantum dots. Kawashima N; Nakayama K; Itoh K; Itoh T; Ishikawa M; Biju V Chemistry; 2010 Jan; 16(4):1186-92. PubMed ID: 20024999 [TBL] [Abstract][Full Text] [Related]
3. Förster resonance energy transfer investigations using quantum-dot fluorophores. Clapp AR; Medintz IL; Mattoussi H Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019 [TBL] [Abstract][Full Text] [Related]
4. Quantum dot-based resonance energy transfer and its growing application in biology. Medintz IL; Mattoussi H Phys Chem Chem Phys; 2009 Jan; 11(1):17-45. PubMed ID: 19081907 [TBL] [Abstract][Full Text] [Related]
5. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube. Biju V; Itoh T; Baba Y; Ishikawa M J Phys Chem B; 2006 Dec; 110(51):26068-74. PubMed ID: 17181259 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096 [TBL] [Abstract][Full Text] [Related]
8. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer. Lu H; Schöps O; Woggon U; Niemeyer CM J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889 [TBL] [Abstract][Full Text] [Related]
9. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing. Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737 [TBL] [Abstract][Full Text] [Related]
10. Visualizing resonance energy transfer in supramolecular surface patterns of β-CD-functionalized quantum dot hosts and organic dye guests by fluorescence lifetime imaging. Dorokhin D; Hsu SH; Tomczak N; Blum C; Subramaniam V; Huskens J; Reinhoudt DN; Velders AH; Vancso GJ Small; 2010 Dec; 6(24):2870-6. PubMed ID: 21080386 [TBL] [Abstract][Full Text] [Related]
11. Developing mixed films of immobilized oligonucleotides and quantum dots for the multiplexed detection of nucleic acid hybridization using a combination of fluorescence resonance energy transfer and direct excitation of fluorescence. Algar WR; Krull UJ Langmuir; 2010 Apr; 26(8):6041-7. PubMed ID: 20000340 [TBL] [Abstract][Full Text] [Related]
12. Self-assembled quantum dot-sensitized multivalent DNA photonic wires. Boeneman K; Prasuhn DE; Blanco-Canosa JB; Dawson PE; Melinger JS; Ancona M; Stewart MH; Susumu K; Huston A; Medintz IL J Am Chem Soc; 2010 Dec; 132(51):18177-90. PubMed ID: 21141858 [TBL] [Abstract][Full Text] [Related]
13. Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. Bharali DJ; Lucey DW; Jayakumar H; Pudavar HE; Prasad PN J Am Chem Soc; 2005 Aug; 127(32):11364-71. PubMed ID: 16089466 [TBL] [Abstract][Full Text] [Related]
14. Can luminescent quantum dots be efficient energy acceptors with organic dye donors? Clapp AR; Medintz IL; Fisher BR; Anderson GP; Mattoussi H J Am Chem Soc; 2005 Feb; 127(4):1242-50. PubMed ID: 15669863 [TBL] [Abstract][Full Text] [Related]
15. Solution-phase single quantum dot fluorescence resonance energy transfer. Pons T; Medintz IL; Wang X; English DS; Mattoussi H J Am Chem Soc; 2006 Nov; 128(47):15324-31. PubMed ID: 17117885 [TBL] [Abstract][Full Text] [Related]
16. Semiconductor nanoparticles as energy mediators for photosensitizer-enhanced radiotherapy. Yang W; Read PW; Mi J; Baisden JM; Reardon KA; Larner JM; Helmke BP; Sheng K Int J Radiat Oncol Biol Phys; 2008 Nov; 72(3):633-5. PubMed ID: 19014777 [TBL] [Abstract][Full Text] [Related]
17. Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells. Squire A; Verveer PJ; Rocks O; Bastiaens PI J Struct Biol; 2004 Jul; 147(1):62-9. PubMed ID: 15109606 [TBL] [Abstract][Full Text] [Related]
18. Observing photophysical properties of quantum dots in air at the single molecule level: advantages in microarray applications. Shi X; Meng X; Sun L; Liu J; Zheng J; Gai H; Yang R; Yeung ES Lab Chip; 2010 Nov; 10(21):2844-7. PubMed ID: 20714508 [TBL] [Abstract][Full Text] [Related]
19. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors. Shi L; Rosenzweig N; Rosenzweig Z Anal Chem; 2007 Jan; 79(1):208-14. PubMed ID: 17194141 [TBL] [Abstract][Full Text] [Related]
20. Quantum dot FRET biosensors that respond to pH, to proteolytic or nucleolytic cleavage, to DNA synthesis, or to a multiplexing combination. Suzuki M; Husimi Y; Komatsu H; Suzuki K; Douglas KT J Am Chem Soc; 2008 Apr; 130(17):5720-5. PubMed ID: 18393422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]