These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 15631898)

  • 1. Changes in NMDA receptor expression in auditory cortex after learning.
    Sun W; Mercado E; Wang P; Shan X; Lee TC; Salvi RJ
    Neurosci Lett; 2005 Feb; 374(1):63-8. PubMed ID: 15631898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early auditory enrichment with music enhances auditory discrimination learning and alters NR2B protein expression in rat auditory cortex.
    Xu J; Yu L; Cai R; Zhang J; Sun X
    Behav Brain Res; 2009 Jan; 196(1):49-54. PubMed ID: 18706452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early APV chronic blocked alters experience-dependent plasticity of auditory spatial representation in rat auditory cortical neurons.
    Cui Y; Cai R; Zhang J; Pan Y; Sun X
    Neurosci Lett; 2010 Jul; 478(3):119-23. PubMed ID: 20452403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early auditory experience-induced composition/ratio changes of N-methyl-D-aspartate receptor subunit expression and effects of D-2-amino-5-phosphonovaleric acid chronic blockade in rat auditory cortex.
    Cui Y; Zhang J; Cai R; Sun X
    J Neurosci Res; 2009 Apr; 87(5):1123-34. PubMed ID: 19025773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous white noise exposure during and after auditory critical period differentially alters bidirectional thalamocortical plasticity in rat auditory cortex in vivo.
    Speechley WJ; Hogsden JL; Dringenberg HC
    Eur J Neurosci; 2007 Nov; 26(9):2576-84. PubMed ID: 17970743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maintenance of enriched environment-induced changes of auditory spatial sensitivity and expression of GABAA, NMDA, and AMPA receptor subunits in rat auditory cortex.
    Cai R; Zhou X; Guo F; Xu J; Zhang J; Sun X
    Neurobiol Learn Mem; 2010 Nov; 94(4):452-60. PubMed ID: 20800100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex.
    Fritz J; Elhilali M; Shamma S
    Hear Res; 2005 Aug; 206(1-2):159-76. PubMed ID: 16081006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning-induced plasticity in animal and human auditory cortex.
    Ohl FW; Scheich H
    Curr Opin Neurobiol; 2005 Aug; 15(4):470-7. PubMed ID: 16009546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased input-specific plasticity of the auditory cortex in mice lacking M1 muscarinic acetylcholine receptors.
    Zhang Y; Hamilton SE; Nathanson NM; Yan J
    Cereb Cortex; 2006 Sep; 16(9):1258-65. PubMed ID: 16292003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-methyl-D-aspartate receptors in the medial septal area have a role in spatial and emotional learning in the rat.
    Elvander-Tottie E; Eriksson TM; Sandin J; Ogren SO
    Neuroscience; 2006 Nov; 142(4):963-78. PubMed ID: 16952425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological memory in primary auditory cortex: characteristics and mechanisms.
    Weinberger NM
    Neurobiol Learn Mem; 1998; 70(1-2):226-51. PubMed ID: 9753599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perceptual learning on an auditory frequency discrimination task by cats: association with changes in primary auditory cortex.
    Brown M; Irvine DR; Park VN
    Cereb Cortex; 2004 Sep; 14(9):952-65. PubMed ID: 15115736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sound sequence discrimination learning is dependent on cholinergic inputs to the rat auditory cortex.
    Kudoh M; Seki K; Shibuki K
    Neurosci Res; 2004 Sep; 50(1):113-23. PubMed ID: 15288504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early auditory deprivation alters expression of NMDA receptor subunit NR1 mRNA in the rat auditory cortex.
    Lu J; Cui Y; Cai R; Mao Y; Zhang J; Sun X
    J Neurosci Res; 2008 May; 86(6):1290-6. PubMed ID: 18041094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decline of long-term potentiation (LTP) in the rat auditory cortex in vivo during postnatal life: involvement of NR2B subunits.
    Hogsden JL; Dringenberg HC
    Brain Res; 2009 Aug; 1283():25-33. PubMed ID: 19520065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consolidation of auditory cortex-dependent memory requires N-methyl-D-aspartate receptor activation.
    Schicknick H; Tischmeyer W
    Neuropharmacology; 2006 May; 50(6):671-6. PubMed ID: 16406444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive auditory plasticity in developing and adult animals.
    Keuroghlian AS; Knudsen EI
    Prog Neurobiol; 2007 Jun; 82(3):109-21. PubMed ID: 17493738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the primary auditory cortex using dynamic synapses: can synaptic plasticity explain the temporal tuning?
    Saeb S; Gharibzadeh S; Towhidkhah F; Farajidavar A
    J Theor Biol; 2007 Sep; 248(1):1-9. PubMed ID: 17559885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Memory-linked morphological changes].
    Balderas I; Ramírez-Amaya V; Bermúdez-Rattoni F
    Rev Neurol; 2004 May 16-31; 38(10):944-8. PubMed ID: 15175978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NR2B subunit-dependent long-term potentiation enhancement in the rat cortical auditory system in vivo following masking of patterned auditory input by white noise exposure during early postnatal life.
    Hogsden JL; Dringenberg HC
    Eur J Neurosci; 2009 Aug; 30(3):376-84. PubMed ID: 19656178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.